Baclofen

By | | No Comments

Author: SCIRE Community Team | Reviewer: Patricia Mills | Published: 21 November 2017 | Updated: ~

Baclofen is a medication that is used to treat spasticity. This page provides basic information about baclofen and its use after spinal cord injury (SCI).

Key Points

  • Baclofen (Lioresal) is a medication that is used to relax muscles affected by spasticity.
  • Baclofen is derived from gamma aminobutyric acid (GABA), a chemical in the body that helps to reduce reflexes that are responsible for spasticity.
  • Baclofen can be taken by mouth as a tablet or injected into the spinal canal in a liquid form through an implanted pump (an intrathecal baclofen pump).
  • Research evidence supports that both baclofen tablets and baclofen pumps are effective to reduce spasticity after SCI.
Ball and stick model of baclofen.

Ball and stick model of baclofen.1

Baclofen is a medication that is used to treat spasticity. It is also known by the trade name Lioresal. Baclofen is a muscle relaxant medication that helps to reduce muscle tension and spasms caused by nervous system disorders like spinal cord injury and multiple sclerosis.

Baclofen is derived from a chemical called gamma aminobutyric acid (GABA), which reduces muscle activity. It can enter into the brain and spinal cord, where it helps to reduce reflexes responsible for spasticity. Baclofen can be taken by mouth as a tablet or injected into the spinal canal as a fluid using an implanted baclofen pump.

Baclofen in tablet form is usually the first type of medication used to treat spasticity after SCI. There is strong evidence that oral baclofen improves the symptoms of spasticity

Baclofen administered by intrathecal pump is usually a last option that is explored because of the surgery that is required to implant the pump. However, when it is used, there is strong evidence that intrathecal baclofen is effective to treat the symptoms of spasticity in people with SCI.

Baclofen is a prescription medication that is given with specific instructions from your health providers on how to take it. It is important to follow their instructions closely when taking this medication and discuss any questions you have about your use of the medication directly with your team.

Baclofen tablets

Two round white 20mg baclofen tablets with "DAN" and "5731" inscribed on one side, and "20" inscribed on the other side.

Baclofen tablet 20 mg. 2

Baclofen is usually taken by mouth as a tablet. Baclofen is prescribed at a unique dose for you and then carefully monitored. Treatment is usually started with a trial of a low dose of the drug to find out if it works and then slowly increased to determine the optimal dose. This dose will then be maintained while continuing to take the drug.

You can expect some side effects when starting Baclofen (and any other anti-spasticity drug), so do not be surprised if that should happen. As your body gets used to the new drug, the side effects can improve and in some cases completely resolve. Side effects, if they occur, usually are experienced before the drug starts to work on the spasticity therefore it is important to stay on the drug as long as the side effects are tolerable. If the side effects have not improved or are not tolerable by the end of 2 weeks of starting the new drug, and you don’t feel that the benefit of the drug is worth the side effects that you are experiencing, then notify your physician as you will likely have to either decrease the dose or consider trying another drug instead.

Cartoon diagram of a man's body with a disc-shaped intrathecal pump implanted under the skin with a red wire catheter inserted into the spinal column

Diagram showing an intrathecal pump inside the spinal column.3

Baclofen pumps (Intrathecal baclofen)

Baclofen may also be injected directly into the sac that surrounds the spinal cord. This is called intrathecal baclofen. ‘Intrathecal’ means ‘within the spinal sac’ (also called the thecal sac).

Intrathecal baclofen is usually administered using a surgically implanted pump that is placed under the skin near the abdomen called a baclofen pump. The pump is then connected to the spinal cord fluid through a thin tube (catheter) that travels through your soft tissue underneath the skin. The pump provides a dose of the medication through the catheter at regular intervals according to its settings.

Baclofen pumps are first managed by a health provider in a hospital setting in the early days following surgical implantation. Then, the device can be programmed to release a programmed dose of baclofen throughout the day for use at home.

Regular visits to the intrathecal baclofen pump doctor are required to refill the pump and monitor for any problems. Therefore, in order for you to be a candidate for getting the pump, you need to be able to travel from where you live to where the pump can be serviced. The pump can be removed if you decide you no longer would like to receive the treatment.

Increasing oral baclofen dosage may result in a number of side effects like sleepiness. The solution is a pump implanted under the skin that administers baclofen directly to the spinal cord, aka “intrathecally”.

When are baclofen pumps used?

Typically, intrathecal baclofen is recommended when spasticity is severe and widespread throughout the body, and other approaches to manage your spasticity, such as medications by mouth, have not worked. Much lower doses of baclofen are used when given as an intrathecal injection. This may help people with severe spasticity to manage spasticity more effectively, and usually results in no side effects.

However, it is important to know that complications with the pump can occur, potentially causing episodes of too much baclofen (baclofen overdose) or too little baclofen (baclofen withdrawal) to be delivered. Therefore, it is important to consult with an intrathecal baclofen pump expert in order to determine if the pump is a good option for you.

Baclofen is not appropriate for everyone. There are certain situations in which it may not be safe to use. This is not a complete list; please consult a health provider for detailed safety information before using this treatment.

Baclofen should not be used in the following situations:

  • By people with health conditions such as epilepsy, kidney problems, diabetes, or breathing problems
  • By people with conditions that cause confusion or depression
  • By people with abnormal blood circulation in the brain
  • By people experiencing pain in the stomach or intestine
  • By individuals with a baclofen allergy
  • By pregnant and nursing women
  • Oral baclofen may be unsafe in individuals with liver disease or difficulty urinating
  • Intrathecal baclofen may be unsafe for people with a history of heart problems, infections, or by those who are prone to autonomic dysreflexia

Even for those who are not restricted from using baclofen (see above), there may be risks and side effects with the use of this treatment. It is important to discuss these possibilities in detail with your health provider before using this treatment.

Risks and side effects of baclofen may include:

  • Drowsiness, tiredness, or dizziness
  • Muscle weakness
  • Confusion
  • Difficulty sleeping (insomnia)
  • Interactions with other drugs such as antidepressants, sleeping pills, alcohol, and other medications
  • Baclofen pumps are implanted surgically, which carries a risk of infection and other surgical risks

Because baclofen helps to relax the muscles, it may also have unintended effects on other medical problems that benefit from increased muscle tone. For example:

  • It may further reduce the cough reflex in people who already have trouble coughing
  • It may make it more difficult to walk, stand, or do other tasks requiring muscle strength and movement
  • Baclofen pumps may make it more difficult for men to have erections, although this may be regained when reducing the dose or stopping treatment

In addition, stopping baclofen therapy abruptly can cause withdrawal. This can cause a variety of symptoms, including seizures, hallucinations, confusion, and fever. When baclofen is stopped, the dose of the medication should be gradually lowered over time before it can be stopped. It is important to follow the routine recommended by your health providers when stopping use of this medication.

Important considerations when treating spasticity

Although we often focus on the negative effects of spasticity, it can also have benefits. For example, spasticity in the legs can sometimes help people transfer more effectively or stand and walk. For this reason, when treatments like baclofen work the way they are supposed to, they can sometimes have negative effects, such as:

  • Reduced functional abilities, such as the ability to transfer, stand, or walk
  • Loss of health benefits of spasticity, such as better circulation and muscle strength
  • Loss of spasticity as a warning sign of other health problems (such as infections or injuries below the level of injury)

The decision to treat spasticity needs to be made by you and your health team on a personal basis, taking into consideration function, symptoms, and the benefits and drawbacks of treatment.

Baclofen is a common treatment for spasticity after SCI. Both baclofen tablets and baclofen pumps are effective for reducing spasticity in people with SCI. As baclofen therapy requires careful dosing and monitoring, it is important to discuss with your health provider about whether this treatment option is suitable for you and how to use it appropriately.

For a review of how we assess evidence at SCIRE Community and advice on making decisions, refer to SCIRE Community Evidence.

Parts of this page have been adapted from the SCIRE Professional “Spasticity” Module:

Hsieh JTC, Connolly SJ, McIntyre A, Townson AF, Short C, Mills P, Vu V, Benton B, Wolfe DL (2016). Spasticity Following Spinal Cord Injury. In Eng JJ, Teasell RW, Miller WC, Wolfe DL, Townson AF, Hsieh JTC, Connolly SJ, Loh E, McIntyre A, Querée M, editors. Spinal Cord Injury Rehabilitation Evidence. Version 6.0: p 1-135.

Available from: https://scireproject.com/evidence/spasticity/

Evidence for “What is baclofen?” is based on the following studies:

Oral baclofen:

[1] Chu V, Hornby T, Schmit B. Effect of antispastic drugs on motor reflexes and voluntary muscle contraction in incomplete spinal cord injury. Arch Phys Med Rehabil 2014;95:622-32.

[2] Nance P, Huff F, Martinez-Arizala A, Ayyoub Z, Chen D, Bian A, Stamler D. Efficacy and safety study of arbaclofen placarbil in patients with spasticity due to spinal cord injury. Spinal Cord 2011;49:974-80.

[3] Aydin G, Tomruk S, Keles I, Demir S, Orkun S. Transcutaneous electrical nerve stimulation versus baclofen in spasticity: clinical and electrophysiologic comparison. Am J Phys Med Rehabil 2005;84:584-92.

[4] Duncan G, Shahani B, Young R. An evaluation of baclofen treatment for certain symptoms in patients with spinal cord lesions. A double-blind, cross-over study. Neurology 1976;26:441-6.

[5] Burke D, Gillies J, Lance J. An objective assessment of a gamma aminobutyric acid derivative in the control of spasticity. Proc Aust Assoc Neurol 1971;8:131-4.

[6] Dicpinigaitis P, Allusson V, Baldanti A, and Nalamati J. Ethnic and gender differences in cough reflex sensitivity. Respiration 2001;68:480-2.Dicpinigaitis P, Allusson V, Baldanti A, and Nalamati J. Ethnic and gender differences in cough reflex sensitivity. Respiration 2001;68:480-2.

[7] Veerakumar A, Cheng J, Sunshine A, Ye X, Zorowitz R, Anderson W. Baclofen dosage after traumatic spinal cord injury: a multi-decade retrospective analysis. Clin Neurol Neurosurg 2015;129:50-6.

[8] Nance P. A comparison of clonidine, cyproheptadine and baclofen in spastic spinal cord injured patients. J Am Paraplegia Soc 1994;17:150-6.

Intrathecal baclofen:

[1] Ordia J, Fischer E, Adamski E, Spatz E. Chronic intrathecal delivery of baclofen by a programmable pump for the treatment of severe spasticity. J Neurosurg 1996;85:452-7.

[2] Nance P, Schryvers O, Schmidt B, Dubo H, Loveridge B, Fewer D. Intrathecal baclofen therapy for adults with spinal spasticity: therapeutic efficacy and effect on hospital admissions. Can J Neurol Sci 1995;22:22-9.

[3] Coffey J, Cahill D, Steers W, Park T, Ordia J, Meythaler J, et al. Intrathecal baclofen for intractable spasticity of spinal origin: results of a long-term multicenter study. J Neurosurg 1993;78:226-32.

[4] Hugenholtz H, Nelson R, Dehoux E, Bickerton R. Intrathecal baclofen for intractable spinal spasticity-a double-blind cross-over comparison with placebo in 6 patients. Can J Neurol Sci 1992;19:188-95.

[5] Loubser P, Narayan R, Sandin K, Donovan W, Russell K. Continuous infusion of intrathecal baclofen: long-term effects on spasticity in spinal cord injury. Paraplegia 1991;29:48-64.

[6] Penn R, Savoy S, Corcos D, Latash M, Gottlieb G, Parke B et al. Intrathecal baclofen for severe spinal spasticity. N Engl J Med 1989;320:1517-21.

[7] Boviatsis E, Kouyialis A, Korfias S, Sakas D. Functional outcome of intrathecal baclofen administration for severe spasticity. Clin Neurol Neurosurg 2005;107:289-95.

[8] Azouvi P, Mane M, Thiebaut J, Denys P, Remy-Neris O, Bussel B. Intrathecal baclofen administration for control of severe spinal spasticity: functional improvement and long-term follow-up. Arch Phys Med Rehabil 1996;77:35-9.

[9] Plassat R, Perrouin Verbe B, Menei P, Menegalli D, Mathe J, Richard I. Treatment of spasticity with intrathecal baclofen administration: Long-term follow-up review of 40 patients. Spinal Cord 2004;42:686-93.

[10] Zahavi A, Geertzen J, Middel B, Staal M, Rietman J. Long term effect (more than five years) of intrathecal baclofen on impairment, disability, and quality of life in patients with severe spasticity of spinal origin. J Neurol Neurosurg Psychi 2004;75:1553-7.

[11] Korenkov A, Niendorf W, Darwish N, Glaeser E, Gaab M. Continuous intrathecal infusion of baclofen in patients with spasticity caused by spinal cord injuries. Neurosurg Rev 2002;25:228-30.

[12] Broseta J, Garcia-March G, Sanchez-Ledesma M, Anaya J, Silva I. Chronic intrathecal baclofen administration in severe spasticity. Stereotact Funct Neurosurg 1990;54-55:147-53.

[13] Parke B, Penn R, Savoy S, Corcos D. Functional outcome after delivery of intrathecal baclofen. Arch Phys Med Rehabil 1989;70:30-2.

Other references:

Burchiel KJ, Hsu FP. Pain and spasticity after spinal cord injury: mechanisms and treatment. Spine 2001; 26(24 Suppl):S146-S160.

Denys P, Mane M, Azouvi P, Chartier-Kastler E, Thiebaut JB, Bussel B. Side effects of chronic intrathecal baclofen on erection and ejaculation in patients with spinal cord lesions. Arch Phys Med Rehabil 1998; 79(5):494-496.

Dicpinigaitis PV, Dobkin JB, Reichel J. Typical versus cough-variant of asthma: differentiation by cough reflex sensitivity and the antitussive effect of zafirlukast. Eur Respir J. 2000; 16:525s.

Gracies JM, Nance P, Elovic E, McGuire J, Simpson DM. Traditional pharmacological treatments for spasticity. Part II: General and regional treatments. Muscle Nerve Suppl 1997; 6:S92-120.

Hinderer SR. The supraspinal anxiolytic effect of baclofen for spasticity reduction. Am J Phys Med Rehabil 1990; 69(5):254-258.

Jones ML, Leslie DP, Bilsky G, Bowman B. Effects of intrathecal baclofen on perceived sexual functioning in men with spinal cord injury. J Spinal Cord Med 2008; 31:97-102.

Kirshblum S. Treatment alternatives for spinal cord injury related spasticity. J Spinal Cord Med 1999; 22(3):199-217.

Knutsson E, Lindblom U, Martensson A. Plasma and cerebrospinal fluid levels of baclofen (Lioresal) at optimal therapeutic responses in spastic paresis. J Neurol Sci 1974; 23(3):473-484.

Nance PW, Schryvers O, Schmidt B, Dubo H, Loveridge B, Fewer D. Intrathecal baclofen therapy for adults with spinal spasticity: therapeutic efficacy and effect on hospital admissions. Can J Neurol Sci 1995; 22:22-29.

Nance PW. A comparison of clonidine, cyproheptadine and baclofen in spastic spinal cord injured patients. J Am Paraplegia Soc 1994; 17(3):150-156.

Postma TJBM, Oenema D, Terpstra S et al. Cost analysis of the treatment of severe spinal spasticity with a continuous intrathecal baclofen infusion system. PharmacoEconomics 1999; 15(4):395-404.

CPS [Internet]. Ottawa (ON): Canadian Pharmacists Association; c2016 [cited 2017 Oct 10]. Available from: https://www.pharmacists.ca/products-services/ or http://www.myrxtx.ca. Also available in paper copy from the publisher.

Image credits

  1. Baclofen ball-and-stick model, ©Vaccinationist, CC BY-SA 4.0,
  2. National Institutes of Health, part of the United States Department of Health and Human ServicesBaclofen 20 mg oral tablet, CC0 1.0
  3. Intrathecal-pump-cartoon, ©R.E.B.E.L EM, CC BY-NC-ND 3.0.

 

Disclaimer: This document does not provide medical advice. This information is provided for educational purposes only. Consult a qualified health professional for further information or specific medical advice. The SCIRE Project, its partners and collaborators disclaim any liability to any party for any loss or damage by errors or omissions in this publication.

Inspiratory Muscle Training

By | | No Comments

Author: SCIRE Community Team | Reviewer: Shannon Sproule | Published: 21 November 2017 | Updated: ~

Inspiratory muscle training is a treatment used to help with breathing and coughing after spinal cord injury (SCI). This page introduces inspiratory muscle training and its use after SCI.

Key Points

  • People with thoracic and cervical SCI may experience problems with breathing caused by weakness or paralysis of some of the breathing muscles.
  • Inspiratory muscle training involves breathing exercises using simple equipment to strengthen the muscles used to breathe in.
  • There are three types of devices that can be used during training: resistive trainers, threshold trainers, and isocapneic hyperpneic trainers.
  • Studies have shown that inspiratory muscle training increases the strength and endurance of the inspiratory muscles in people with SCI.

Cartoon of inhaler and head

Inspiratory muscle training describes a number of different techniques in which simple equipment is used to strengthen the muscles used to breathe in (inspire). The equipment is used to make breathing in more challenging. This causes the breathing muscles to work harder, so that they can adapt and become stronger with training.

Speak with a health provider before using inspiratory muscle training to make sure it is safe and suitable for you and to learn how to use the equipment correctly.

Inspiratory muscle training is done using a device that makes breathing in more challenging. The device has some type of mechanism that creates resistance when the person breathes in, but allows breathing out to occur freely. There are several different types of inspiratory muscle training devices:

  • Resistive trainers are the simplest trainers. They have a range of small diameter holes, which the person breathes in through. The smaller the hole, the greater the challenge is. The drawback of these trainers is that the resistance changes if you breathe in quickly or slowly.
  • Threshold trainers have a spring-loaded valve that provides resistance. The valve can be adjusted for difficulty level. These trainers provide the same resistance if you breathe in quickly or slowly.
  • Isocapneic hyperpnea involves a more complex device that allows breathing to be done at lower levels of resistance and higher flow rates. This device uses a rebreathing bag that helps maintain carbon dioxide levels in a normal range. This device uses targets to increase the intensity of breathing to a training level.

 

Different types of inspiratory muscle trainers – Top: threshold trainer; bottom: resistive trainer.2

Your health provider will assist you with selecting an appropriate trainer and supervise your early training. The device is held to the mouth with a clip over the nose. Some people with reduced hand movement will need someone to position and hold the trainer during each training session. Alternatively, tilting the chair backwards or using a stand to hold the trainer may assist with positioning the mouthpiece independently.

Inspiratory muscle training involves regular sessions of breathing exercises consisting of a set number of breaths and sets. Sessions often last around 30 minutes and are done 2 to 3 times per day. However, the ideal protocol for inspiratory muscle training for people with SCI is not yet known.

Inspiratory muscle training is usually done for at least 6 weeks to allow enough time for the muscles to become stronger and adapt to training. Like other exercise, training should be continued regularly for strength to be maintained.

Silhouette of the respiratory system

Cervical and thoracic spinal cord injuries can cause paralysis or weakness of muscles of the neck, chest, and abdomen that are important for breathing and coughing. This can cause breathing problems that can contribute to shortness of breath, fatigue, and a need for mechanical ventilation.

Depending on the level of injury of the SCI, some of the muscles of breathing may still be able to be controlled. In some cases, strengthening these muscles can help to compensate for weakness in other muscles and improve breathing ability.

Inspiratory muscle training is used to strengthen the muscles that can be controlled to improve independent breathing ability. It may also be used to help prevent medical complications related to breathing and coughing problems, such as lung infections like pneumonia.

Who benefits from inspiratory muscle training?

Every person is unique, and how much inspiratory muscle training will benefit any individual depends on the characteristics of their SCI and their unique life circumstances. That being said, in general, inspiratory muscle training is considered most beneficial for people with injuries in the mid-cervical to mid-thoracic spinal cord. These types of injuries tend to have breathing problems that could benefit from inspiratory muscle training and also have muscles available to train. People with upper cervical SCI usually have greater impairment of the breathing muscles that often requires more extensive breathing support instead, such as ongoing mechanical ventilation.

There are certain situations where extra attention is needed to determine whether inspiratory muscle training is appropriate and safe. Consult a qualified health provider for further safety information.

Restrictions of precautions for using inspiratory muscle training may include:

cartoon of a man inhaling from a puffer

  • Unstable asthma
  • Previous collapsed lung (pneumothorax) not caused by a traumatic injury
  • Unhealed collapsed lung (pneumothorax) caused by a traumatic injury
  • Presence of air bubbles near the membranes lining the lungs
  • A low tolerance for shortness of breath
  • A ruptured eardrum or other ear conditions

Inspiratory muscle training is generally safe when used appropriately (see above for a list of situations in which inspiratory muscle training may not be safe). However, it is important to seek advice from a health provider to determine if this treatment is the best option for you.

Some possible risks and side effects of using inspiratory muscle training may include:cartoon of a man holding his chest distraught

  • Coughing
  • If breathing is done too rapidly, it could cause hyperventilation, leading to lightheadedness, dizziness, or fainting
  • Muscle tiredness or soreness
  • Increased muscle spasms

silhouette showing back and vertebrae with lighting bolts beside it

Several research studies have shown that inspiratory muscle training helps to improve breathing after spinal cord injury. Inspiratory muscle training was found to improve the strength and endurance of the breathing muscles. As well, it may reduce shortness of breath and chest infections in some people with SCI. These findings are supported by moderate evidence from five studies and weak evidence from six studies.

Research on whether inspiratory muscle training is effective in helping with speaking and coughing and what its long-term effects are is currently lacking.

Breathing difficulties are common among people with thoracic and cervical injuries. Inspiratory muscle training is a safe treatment option for increasing strength of breathing muscles to aid breathing. The research evidence suggests inspiratory muscle training is effective in increasing strength and endurance of the breathing muscles after SCI. It is important to discuss treatment options with your health providers to find out which treatments are suitable for you.

For a review of how we assess evidence at SCIRE Community and advice on making decisions, please see SCIRE Community Evidence.

Parts of this page have been adapted from the SCIRE Project (Professional) “Respiratory Management” Chapter:

Sheel AW, Reid WD, Townson AF, Ayas N (2014). Respiratory Management Following Spinal Cord Injury. In: Eng JJ, Teasell RW, Miller WC, Wolfe DL, Townson AF, Hsieh JTC, Connolly SJ, Noonan VK, Loh E, McIntyre A, editors.

Spinal Cord Injury Rehabilitation Evidence. Version 5.0. Vancouver: p. 1-54. Available from: https://scireproject.com/evidence/rehabilitation-evidence/respiratory-management/ 

 

Evidence for “How effective is inspiratory muscle training for people with SCI?” is based on the following studies:

[1] Van Houtte S, Vanlandewijck Y, Kiekens C, Spengler CM, Gosselink R. Patients with acute spinal cord injury benefit from normocapnic hyperpnoea training. J Rehabil Med 2008; 40: 119-125.

[2] Mueller G, Hopman MTE, and Perret C. Comparison of respiratory muscle training methods in individuals with motor complete tetraplegia. Top Spinal Cord Inj Rehabil 2012; 18(2): 118-121.

[3] Mueller G, Hopman MTE, and Perret C. Comparison of respiratory muscle training methods in individuals with motor and sensory complete tetraplegia: a randomized controlled trial. J Rehabil Med 2013; 45: 248-253.

[4] Loveridge B, Badour M, Dubo H. Ventilatory muscle endurance training in quadriplegia: effects on breathing pattern. Paraplegia 1989; 27: 329-339.

[5] Liaw M-Y, Lin M-C, Cheng P-T, Wong M-K A, Tang F-T. Resistive inspiratory muscle training: its effectiveness in patients with acute complete cervical injury. Arch Phys Med Rehabil 2000; 81: 752-756.

[6] Derrickson J, Ciesla N, Simpson N, Imle PC. A comparison of two breathing exercise programs for patients with quadriplegia. Physical Therapy 1992; 72: 763-769.

[7] Tamplin J, Baker FA, Grocke D, Brazzale DJ, Pretto JJ, Ruehland WR, Buttifant M, Brown DJ and Berlowitz DJ. Effect of singing on respiratory function, voice and mood after quadriplegia: a randomized controlled trial. Arch Phys Med Rehabil 2013; 94: 426-434.

[8] Litchke LG, Lloyd LK, Schmidt EA, Russian CJ, and Reardon RF. Effects of concurrent respiratory resistance training on health-related quality of life in wheelchair rugby athletes: a pilot study. Top Spinal Cord Inj Rehabil 2012; 18(3): 264-272.

[9] Ehrlich M, Manns PJ, Poulin C. Respiratory training for a person with C3-C4 tetraplegia. Aust J Physiother 1999; 45(4): 301-307.

[10] Uijl SG, Houtman S, Folgering HT, Hopman MT. Training of the respiratory muscles in individuals with tetraplegia. Spinal Cord 1999; 37: 575-9.

[11] Rutchik A, Weissman AR, Almenoff PL, Spungen AM, Bauman WA, Grimm DR. Resistive IMT in subjects with chronic spinal cord injury. Arch Phys Med Rehabil 1998; 79: 293-297.

[12] Hornstein S, Ledsome JR. Ventilatory muscle training in acute quadriplegia. Physiotherapy Canada 1986; 38: 145-149.

[13] Gross D, Ladd HW, Riley EJ, Macklem PT, Grassino A. The effect of training on strength and endurance of the diaphragm in quadriplegia. Am J Med 1980; 68: 27-35.

Other references:

Postma K, Haisma JA, Hopman M, Bergen MP, Stam HJ, Bussmann JB. Resistive inspiratory muscle training in people with spinal cord injury during inpatient rehabilitation: a randomized controlled trial. Phys Ther 2014; 94(12): 1709-1719.

McConnell A. Respiratory muscle training: theory and practice. London: Churchill Livingston; 2013. Chapter 6, Implementing respiratory muscle training; p.149-173.

Berlowitz DJ, Tamplin J. Respiratory muscle training for cervical spinal cord injury. Cochrane Database of Syst Rev 2013, 7: CD008507.

Spungen AM, Grimm DR, Lesser M, Bauman WA, Almenoff PL. Self-reported prevalence of pulmonary symptoms in subjects with spinal cord injury. Spinal Cord 1997; 35: 652-657,

Reid WD, Geddes EL, Brooks D, O’Brien K, Crowe J. Inspiratory muscle training in chronic obstructive pulmonary disease. Special Series on Skeletal Muscle Training. Physiotherapy Canada 2004; 56:128-142.

Geddes EL, Reid WD, Brooks D, Crowe J, O’Brien K. A Primer on Inspiratory Muscle Trainers. Buyers Guide for the European Respiratory Society 2006.

Geddes EL, Reid WD, Crowe J., O’Brien K, Brooks D. Inspiratory muscle training in adults with chronic obstructive pulmonary disease: A systematic review. Respir Med 2005; 99: 1440-1458.

Sheel AW, Reid WD, Townson AF, Ayas NT, Konnyu KJ. Effects of exercise training and inspiratory muscle training in spinal cord injury: a systematic review. J Spinal Cord Med 2008; 31(5): 500-8.

Image Credits

  1. asthma ©Delwar Hossain, CC BY 3.0 US
  2. Image by SCIRE Community Team
  3. respiratory organ ©ProSymbols, CC BY 3.0 US
  4. inhalation ©Priyanka, CC BY 3.0 US
  5. hiccup ©Priyanka, CC BY 3.0 US
  6. Back Pain ©Matt Wasser, CC BY 3.0 US

 

Disclaimer: This document does not provide medical advice. This information is provided for educational purposes only. Consult a qualified health professional for further information or specific medical advice. The SCIRE Project, its partners and collaborators disclaim any liability to any party for any loss or damage by errors or omissions in this publication.

Botulinum Toxin

By | | No Comments

Author: SCIRE Community Team | Reviewer: Patricia Mills | Published: 10 November 2017 | Updated: ~

Botulinum toxin injections may be used as a treatment after spinal cord injury (SCI). This page provides an overview of the use of botulinum toxin after SCI.

Key Points

  • Botulinum toxin is a protein made by bacteria that can cause muscle weakness or paralysis.
  • Very small doses of certain strains of botulinum toxin may be injected into muscles as a treatment for various medical conditions.
  • Botulinum toxin injections are currently used to treat muscle spasticity and certain types of bladder problems after SCI.
  • Research evidence supports that botulinum toxin is effective to reduce spasticity in muscles and to manage certain types of bladder problems after SCI.
A structure of a botulinum toxin molecule

A structure of a botulinum toxin molecule.1

Botulinum toxin is a protein produced by bacteria. Although this protein can be toxic to humans, injections of very small amounts of certain strains of botulinum toxin are used in medicine. Botulinum toxin is well-known by the trade names Botox, Dysport, and Xeomin as a cosmetic procedure for reducing wrinkles. However, it is also used as a treatment for various other medical conditions.

Botulinum toxin injections may be used after SCI to treat:

  • Problematic spasticity that is located in specific muscles (widespread spasticity is usually treated with an oral medication instead)
  • Overactive (reflex) bladder problems after SCI

Botulinum toxin injections into the bladder may also help to prevent autonomic dysreflexia that is triggered by bladder problems after SCI.

Monochrome cartoon logo of bottle and injection needleBotulinum toxin is given with an injection into the affected spastic muscle or bladder. 

The exact procedures and dose provided will be different for each person. Consult your health provider for further information about how botulinum toxin procedures may be done.

Multiple injections may be given in one session to ensure enough of the toxin reaches the muscle. After the injections, it may take up to a week for you to notice an effect. Exercise and stretching are usually recommended after the injection to enhance the effects of botulinum toxin.

Botulinum toxin injections are not permanent, and their effects wear off in usually around 3 months (in the case of muscle injections) to 6 months (in the case of bladder injections). Sessions are scheduled on an ongoing basis to maintain the effects of the treatment.

A black and white cartoon diagram of a neural synapse

When botulinum toxin is injected into a muscle, it blocks the nerves to the muscles from releasing a chemical called acetylcholine. Acetylcholine makes muscles contract (tense). When its release is blocked, the muscles are unable to contract, causing weakness or paralysis. In a muscle with spasticity, botulinum toxin can help to decrease muscle spasms.

Botulinum toxin can be used to treat overactive (reflex) bladder problems for similar reasons. These bladder problems happen when the bladder muscle or the bladder sphincters spasm, preventing emptying or causing random emptying of urine (detrusor hyperreflexia). The injection of botulinum toxin into these muscles reduces muscle spasms, which may help to treat these problems.

Botulinum toxin is not suitable for everyone for medical reasons. It is also important to know that botulinum toxin treatments can be expensive depending on how your medications are funded. Consult your doctor for detailed information about whether this treatment is safe and appropriate for you.

Botulinum toxin should not be used in the following situations:

Silhouette cartoon of pregnant woman

  • By people with other neuromuscular disorders, such as myasthenia gravis
  • By people who have an allergy to any of the injection ingredients
  • By pregnant or nursing women
  • In areas of infection

Botulinum toxin should be used with caution in the following situations:

  • By people taking anticoagulants (blood thinners)

Additional precautions when botulinum toxin is used in the bladder:

Botulinum toxin injections are generally considered to have low risk of serious medical complications with their use. However, there are side effects and risks of this treatment that are important to discuss with your doctor. Side effects usually happen within the first few days after injection, but sometimes last longer. This is not a complete list; speak to your doctor for detailed information about botulinum toxin injections.

Risks and side effects of botulinum toxin injections may include:Stock image of figure experiencing knee pain

  • Muscle weakness – usually in the muscles that receive the injection, but may be generalized to other muscles, although this is a rare occurrence
  • Long-term use may lead to loss of muscle size and bulk that happens when the muscles are not used (muscle atrophy)

Risks and side effects of botulinum toxin used for bladder problems include:

For more information on urinary tract infections, check out our article here!

Risks and side effects related to injections of any kind:

In addition to the risks of botulinum toxin itself, injections of any kind may cause pain or tenderness, inflammation, changes to sensation, redness, infections, bleeding, bruising, light-headedness and fainting.

Important considerations when treating spasticity

Although we often focus on the negative effects of spasticity, it can also have benefits. For example, spasticity in the legs can sometimes help people transfer more effectively or stand and walk. For this reason, when treatments like botulinum toxin work the way they are supposed to, they can sometimes have negative effects, such as:

  • Reduced functional abilities, such as the ability to transfer, stand, or walk
  • Loss of health benefits of spasticity, such as better circulation, and muscle strength
  • Loss of spasticity as a warning sign of other health problems (such as infections or injuries below the level of injury)

The decision to treat spasticity needs to be made by you and your health team on a personal basis, taking into consideration function, symptoms, and the benefits and drawbacks of treatment.

Botulinum toxin has been studied thoroughly as a treatment for spasticity in other conditions like stroke and brain injury. There is strong evidence to support that it is effective for treating spasticity in these conditions. Fewer studies have looked at how effective botulinum toxin injections are after SCI.

Spasticity

There is moderate evidence that botulinum toxin injections can be used to improve muscle spasticity in the injected muscle after SCI. It may also help to improve problems related to spasticity, such as pain, sleep disturbances, and walking problems.

Overactive (reflex) bladder problems

There is strong evidence that botulinum toxin injections are an effective treatment option for reducing the symptoms of overactive (reflex) bladder problems after SCI. This includes both:

  • Injections into the bladder muscle to prevent leaking or incontinence
  • Injections into the sphincter muscles to improve bladder emptying
    Image showing the urinary system. Bottom right image shows a person's abdomen with two bean-shaped kidneys connecting by tubes labelled 'ureters' to the bladder (just above the pubic bone). Enlargement top left shows the bladder surrounded by a smooth muscle labelled 'bladder wall muscle'. Urine is contained in the bladder. The bladder connect downward to a tube labelled 'urethra'. The exit of the bladder to the urethra has muscles surrounding it labelled 'bladder sphincter muscles'.

    The components of the urinary system.7

Autonomic dysreflexia and the spastic bladder

Some of the studies that have looked at treating bladder problems after SCI have also found that some participants also had fewer episodes of autonomic dysreflexia after treatment. This was thought to be because bladder problems triggered autonomic dysreflexia in these individuals. However, there is not enough evidence to use botulinum toxin as a direct treatment for preventing autonomic dysreflexia at this time.

See our article on Autonomic Dysreflexia for more information!

Botulinum toxin injections are a treatment option for spasticity and overactive (reflex) bladder problems after SCI. Botulinum toxin can be effective for reducing the symptoms related to these problems after SCI. It is important to discuss with your health provider about whether this treatment option is suitable for you.

For a review of how we assess evidence at SCIRE Community and advice on making decisions, please see SCIRE Community Evidence.

Parts of this page have been adapted from the SCIRE Project (Professional) “Bladder Management”, “Autonomic Dysreflexia”, and “Spasticity” chapters:

Hsieh JTC, Connolly SJ, McIntyre A, Townson AF, Short C, Mills P, Vu V, Benton B, Wolfe DL (2016). Spasticity Following Spinal Cord Injury. In Eng JJ, Teasell RW, Miller WC, Wolfe DL, Townson AF, Hsieh JTC, Connolly SJ, Loh E, McIntyre A, Querée M, editors. Spinal Cord Injury Rehabilitation Evidence. Version 6.0: p 1-135.

Available from: https://scireproject.com/evidence/rehabilitation-evidence/spasticity/

Hsieh J, McIntyre A, Iruthayarajah J, Loh E, Ethans K, Mehta S, Wolfe D, Teasell R. (2014). Bladder Management Following Spinal Cord Injury. In Eng JJ, Teasell RW, Miller WC, Wolfe DL, Townson AF, Hsieh JTC, Connolly SJ, Noonan VK, Loh E, McIntyre A, editors. Spinal Cord Injury Rehabilitation Evidence. Version 5.0: p 1-196.

Available from: https://scireproject.com/evidence/rehabilitation-evidence/bladder-management/

Krassioukov A, Blackmer J, Teasell RW, Eng JJ (2014). Autonomic Dysreflexia Following Spinal Cord Injury. In Eng JJ, Teasell RW, Miller WC, Wolfe DL, Townson AF, Hsieh JTC, Connolly SJ, Noonan VK, Loh E, McIntyre A, editors. Spinal Cord Injury Rehabilitation Evidence. Version 5.0. Vancouver: p 1- 35.

Available from: https://scireproject.com/evidence/rehabilitation-evidence/autonomic-dysreflexia/

 

Evidence for “Is botulinum toxin effective?” is based on the following studies:

Spasticity:

[1] Richardson D, Sheean G, Werring D, Desai M, Edwards S, Greenwood R et al. Evaluating the role of botulinum toxin in the management of focal hypertonia in adults. J Neurol Neurosurg Psychi 2000;69:499-506.

[2] Spiegl U, Maier D, Gonschorek O, Heyde C, Buhren V. Antispastic therapy with botulinum toxin type A in patients with traumatic spinal cord lesion. GMS Interdiscip Plast Reconstr Surg 2014;3:1-5.

[3] Bernuz B, Genet F, Terrat P, et al. Botulinum toxin effect on voluntary and stretch reflex-related torque produced by the quadriceps: An isokinetic pilot study. Neurorehabil Neural Repair 2012;26:542-7.

[4] Hecht M, Stolze H, uf dem B, Giess R, Treig T, Winterholler M et al. Botulinum neurotoxin type A injections reduce spasticity in mild to moderate hereditary spastic paraplegia–report of 19 cases. Mov Disord 2008;23:228-33.

[5] Al-Khodairy A, Gobelet C, Rossier A. Has botulinum toxin type A a place in the treatment of spasticity in spinal cord injury patients? Spinal Cord 1998;36:854-8.

Bladder problems:

Detrusor overactivity

[1] Mehta S, Hill D, McIntyre A, Foley N, Hsieh J, Ethans K et al. Meta-analysis of botulinum toxin A detrusor injections in the treatment of neurogenic detrusor overactivity after spinal cord injury. Arch Phys Med Rehabil 2013;94(8):1473-1481.

[2] Schurch B, de SM, Denys P, Chartier-Kastler E, Haab F, Everaert K et al. Botulinum toxin type is a safe and effective treatment for neurogenic urinary incontinence: Results of a single treatment, randomized, placebo controlled 6-month study. J Urol 2005;174(1):196-200.

[3] Grosse J, Kramer G, Jakse G. Comparing two types of botulinum-A toxin detrusor injections in patients with severe neurogenic detrusor overactivity: A case-control study. BJU International 2009;104:651-656.

[4] Schurch B, Denys Pierre, Kozma CM, Reese PR, Slaton T, Barron RL. Botulinum toxin A improves the quality of life of patients with neurogenic urinary incontinence. European urology 2007:52(3):850-859.

[5] Del Popolo G, Filocamo MT, Li Marzi V, Macchiarella A, Cecconi F, Lombardi G, Nicita G. Neurogenic detrusor overactivity treated with english botulinum toxin a: 8-year experience of one single centre. Eur Urol. 2008 May;53(5):1013-19.

[6] Giannantoni A, Meatini E, Del Zingaro M, Porena M. Six-year follow-up of Botulinum Toxin A intradetrosrial injections in patients with refractory neurogenic detrusor overactivity: Clinical and urodynamic results. European Urology 2009;55:705-712.

[7] Klaphajone J, Kitisomprayoonkul W, Sriplakit S. Botulinum toxin type A injections for treating neurogenic detrusor overactivity combined with low-compliance bladder in patients with spinal cord lesions. Arch Phys Med Rehabil 2005;86:2114-2118.

[8] Kuo H. Therapeutic effects of suburothelial injection of botulinum a toxin for neurogenic detrusor overactivity due to chronic cerebrovascular accident and spinal cord lesions. Urology 2006;67:232-236.

[9] Kuo H. Satisfaction with urethral injection of botulinum toxin A for detrusor sphincter dyssynergia in patients with spinal cord lesion. Neurourol Urodyn 2008;27:793-796.

[10] Pannek J, Gocking K, Bersch U. Long-term effects of repeated intradetrusor botulinum neurotoxin A injections on detrusor function in patients with neurogenic bladder dysfunction. BJU International 2009;104:1246-1250.

[11] Tow AM, Toh KL, Chan SP, Consigliere D. Botulinum toxin type A for refractory neurogenic detrusor overactivity in spinal cord injured patients in Singapore. Ann Acad Med Singapore 2007;36(1):11-17.

[12] Wefer B, Ehlken B, Bremer J, Burgdörfer H, Domurath B, Hampel C. Treatment outcomes and resource use of patients with neurogenic detrusor overactivity receiving botulinum toxin A (BOTOX®) therapy in Germany. World J Urol 2010;28(3):385-390.

[13] Akbar M, Abel R, Seyler TM, Bedke J, Haferkamp A, Gerner HJ et al. Repeated botulinum-A toxin injections in the treatment of myelodysplastic children and patients with spinal cord injuries with neurogenic bladder dysfunction. BJU Int 2007;100(3):639-645.

[14] Patki P, Hamid R, Shah PJ, Craggs M. Long-term efficacy of AMS 800 artificial urinary sphincter in male patients with urodynamic stress incontinence due to spinal cord lesion. Spinal Cord 2006;44(5):297-300.

[15] Herschorn S, Gajewski J, Ethans K, Corcos J, Carlson K, Bailly G et al. Efficacy of botulinum toxin A injection for neurogenic detrusor overactivity and urinary incontinence: A randomized, double-blind trial. J urology 2011;185(6):2229-2235.

[16] Abdel-Meguid T. Botulinum toxin-A injections into neurogenic overactive bladder—to include or exclude the trigone? A prospective, randomized, controlled trial. J urology 2010;184(6):2423-2428.

[17] Krhut J, Samal V, Nemec D, Zvara P. Intradetrusor versus suburothelial onabotulinumtoxinA injections for neurogenic detrusor overactivity: A pilot study. Spinal cord 2012;50(12):904-907.

Sphincter overactivity

[1] Kuo H. Therapeutic outcome and quality of life between urethral and detrusor botulinum toxin treatment for patients with spinal cord lesions and detrusor sphincter dyssynergia. Inter J Clin Prac 2013;67(10):1044-1049.

[2] Kuo H. Satisfaction with urethral injection of botulinum toxin A for detrusor sphincter dyssynergia in patients with spinal cord lesion. Neurourol Urodyn 2008;27:793-796.

[3] Tsai SJ, Ying TH, Huang YH, Cheng JW, Bih LI, Lew HL. Transperineal injection of botulinum toxin A for treatment of detrusor sphincter dyssynergia: Localization with combined fluoroscopic and electromyographic guidance. Arch Phys Med Rehabil 2009;90:832-836

[4] DeSeze M, Petit H, Gallien P, de Seze MP, Joseph PA, Mazaux JM et al. Botulinum a toxin and detrusor sphincter dyssynergia: A double-blind lidocaine-controlled study in 13 patients with spinal cord disease. Eur Urol 2002;42(1):56-62.

[5] Chen SL, Bih LI, Chen GD, Huang YH, You YH, Lew HL. Transrectal ultrasound-guided transperineal botulinum toxin A injection to the external urethral sphincter for treatment of detrusor external sphincter dyssynergia in patients with spinal cord injury. Arch Phys Med Rehabil 2010;91:340-344.

[6] Schurch B, Hauri D, Rodic B, Curt A, Meyer M, Rossier AB. Botulinum-A toxin as a treatment of detrusor-sphincter dyssynergia: A prospective study in 24 spinal cord injury patients. J Urol 1996;155(3):1023-1029.

[7] Phelan MW, Franks M, Somogyi GT, Yokoyama T, Fraser MO, Lavelle JP et al. Botulinum toxin urethral sphincter injection to restore bladder emptying in men and women with voiding dysfunction. J Urol 2001;165(4):1107-1110.

Other references:

Alvares R, Silva,J, Barboza A, Monteiro R. Botulinum toxin A in the treatment of spinal cord injury patients with refractory neurogenic detrusor overactivity. International braz j urol 2010;36(6):732-737.

Bagi P, Biering-Sørensen F. Botulinum toxin A for treatment of neurogenic detrusor overactivity and incontinence in patients with spinal cord lesions. Scandinavian J Urol and nephrology 2004;38(6):495-498.

Caremel R, Courtois F, Charvier K, Ruffion A, Journel N. Side effects of intradetrusor botulinum toxin injections on ejaculation and fertility in men with spinal cord injury: Preliminary findings. BJU international 2012;109(11):1698-1702.

Chang E, Ghosh N, Yanni D, Lee S, Alexandru D, Mozaffar T. A Review of Spasticity Treatments: Pharmacological and Interventional Approaches. Crit Rev Phys Rehabil Med. 2013;25(1-2):11-22.

Chen G, Liao L. Injections of botulinum toxin A into the detrusor to treat neurogenic detrusor overactivity secondary to spinal cord injury. Intern Urol Nephrol 2011;43(3):655-662.

Chen S, Kuo H. Therapeutic outcome and patient adherence to repeated onabotulinumtoxinA detrusor injections in chronic spinal cord-injured patients and neurogenic detrusor overactivity. Journal of the Formosan Medical Association 2013.

Cho YS, Kim KH. Botulinum toxin in spinal cord injury patients with neurogenic detrusor overactivity. J Exerc Rehabil. 2016 Dec 31;12(6):624-631.

CPS [Internet]. Ottawa (ON): Canadian Pharmacists Association; c2016 [cited 2017 Nov 2]. Available from: https://www.pharmacists.ca/products-services/ or http://www.myrxtx.ca. Also available in paper copy from the publisher.

Del Popolo G, Filocamo M, Li Marzi V, Macchiarella A, Cecconi F, Lombardi G, et al. Intermittent self-catheterization habits and opinion on aspetic VaPro catheter in French neurogenic bladder population. Spinal Cord 2012;50(11):853-858.

Dykstra DD, Sidi AA, Scott AB, Pagel JM, Goldish GD. Effects of botulinum A toxin on detrusor-sphincter dyssynergia in spinal cord injury patients. J Urol 1988;139(5):919-922.

Dykstra DD, Sidi AA. Treatment of detrusor-sphincter dyssynergia with botulinum A toxin: A double-blind study. Arch Phys Med Rehabil 1990;71(1):24-26.

Ehren I, Volz D, Farrelly E, Berglund L, Brundin L, Hultling C et al. Efficacy and impact of botulinum toxin A on quality of life in patients with neurogenic detrusor overactivity: A randomised, placebo-controlled, double-blind study. Scand J Urol Nephrol 2007;41(4):335-340.

Fried G & Fried K. Spinal cord injury and use of botulinum toxin in reducing spasticity. Phys Med Rehabil Clin N Am 2003;14:901-10.

Fried GW, Fried KM. Spinal cord injury and use of botulinum toxin in reducing spasticity. Phys Med Rehabil Clin N Am. 2003 Nov;14(4):901-10. Review.

Game X, Chartier-Kastler E, Ayoub N, Even-Schneider A, Richard F, Denys P. Outcome after treatment of detrusor-sphincter dyssynergia by temporary stent. Spinal Cord 2008; 46:74-77.

Grosse J, Kramer G, Jakse G. Comparing two types of botulinum-A toxin detrusor injections in patients with severe neurogenic detrusor overactivity: A case-control study. BJU International 2009; 104:651-656.

Haar GT, Dyson M, Oakley EM. The use of ultrasound by physiotherapists in Britain, 1985. Ultrasound in Med & Biol 1987. 13(10): 659-663.

Haferkamp A, Schurch B, Reitz A, Krengel U, Grosse J, Kramer G. Lack of ultrastructural detrusor changes following endoscopic injection of botulinum toxin type A in overactive neurogenic bladder. European urology 2004;46(6):784-791.

Hajebrahimi S, Altaweel W, Cadoret J, Cohen E, Corcos J. Efficacy of botulinum-A toxin in adults with neurogenic overactive bladder: Initial results. Canadian J Urol 2005;12:2543-2546.

Hikita K, Honda M, Kawamoto B, Panagiota T, Inoue S, Hinata N. Botulinum toxin type A injection for neurogenic detrusor overactivity: Clinical outcome in Japanese patients. International J Urol 2013;20(1):94-99.

Hori S, Patki P, Attar K, Ismail S, Vasconcelos J, Shah P. Patients’ perspective of botulinum toxin-A as a long-term treatment option for neurogenic detrusor overactivity secondary to spinal cord injury. BJU International 2009;104,:216-220.

Karsenty G, Chartier-Kastler E, Mozer P, Even-Schneider A, Denys P, Richard F. A novel technique to achieve cutaneous continent urinary diversion in spinal cord-injured patients unable to catheterize through native urethra. Spinal Cord 2008;46(4):305-310.

Karsenty G, Reitz A, Lindemann G, Boy S, Schurch B. Persistence of therapeutic effect after repeated injections of botulinum toxin type A to treat incontinence due to neurogenic detrusor overactivity. Urology 2006;68(6):1193-1197.

Kaviani A, Khavari R. Disease-Specific Outcomes of Botulinum Toxin Injections for Neurogenic Detrusor Overactivity. Urol Clin North Am. 2017 Aug;44(3):463-474.

Kuo H. Satisfaction with urethral injection of botulinum toxin A for detrusor sphincter dyssynergia in patients with spinal cord lesion. Neurourol Urodyn 2008;27:793-796.

Kuo H. Therapeutic outcome and quality of life between urethral and detrusor botulinum toxin treatment for patients with spinal cord lesions and detrusor sphincter dyssynergia. Inter J Clin Prac 2013;67(10):1044-1049.

Kuo HC, Liu SH. Effect of repeated detrusor onabotulinumtoxinA injections on bladder and renal function in patients with chronic spinal cord injuries. Neurourol Urodyn 2011;30:1541–1545.

Lui J, Sarai M, Mills PB. Chemodenervation for treatment of limb spasticity following spinal cord injury: a systematic review. Spinal Cord. 2015 Apr;53(4):252-64. doi: 10.1038/sc.2014.241. Epub 2015 Jan 13. Review.

Lui J, Sarai M, Mills PB. Chemodenervation for treatment of limb spasticity following spinal cord injury: a systematic review. Spinal Cord. 2015 Apr;53(4):252-64. doi: 10.1038/sc.2014.241. Epub 2015 Jan 13. Review.

Marciniak C, Rader L, Gagnon C. The use of botulinum toxin for spasticity after spinal cord injury. Am J Phys Med Rehabil. 2008 Apr;87(4):312-7; quiz 318-20, 329.

Mascarenhas F, Cocuzza M, Gomes C, Leão N. Trigonal injection of botulinum toxin‐A does not cause vesicoureteral reflux in neurogenic patients. Neurourol Urodyn 2008;27(4):311-314.

Ni J, Wang X, Cao N, Si J, Gu B. Is repeat Botulinum Toxin A injection valuable for neurogenic detrusor overactivity-A systematic review and meta-analysis. Neurourol Urodyn. 2017 Jul 26. doi: 10.1002/nau.23354. [Epub ahead of print]

Nigam PK, Nigam A. Botulinum toxin. Indian J Dermatol 2010; 55(1):8-14.

Petit H, Wiart L, Gaujard E, Le BF, Ferriere JM, Lagueny A et al. Botulinum A toxin treatment for detrusor-sphincter dyssynergia in spinal cord disease. Spinal Cord 1998;36(2):91-94.

Reitz A, Denys P, Fermanian C, Schurch B, Comperat E, Chartier-Kastler E. Do repeat intradetrusor botulinum toxin type a injections yield valuable results? Clinical and urodynamic results after five injections in patients with neurogenic detrusor overactivity. Euro Urol 2007;52(6):1729-1735.

Reitz A, Stohrer M, Kramer G, Del Popolo G, Chartier-Kastler E, Pannek J et al. European experience of 200 cases treated with Botulinum-A Toxin injections into the detrusor muscle for urinary incontinence due to neurogenic detrusor overactivity. European Urology 2004;45:510-515.

Richardson D, Edwards S, Sheean GL, Greenwood RJ, Thompson AJ. The effect of botulinum toxin on hand function after incomplete spinal cord injury at the level of C5/6: a case report. Clin Rehabil 1997; 11(4):288-292.

Schurch B, Stohrer M, Kramer G, Schmid DM, Gaul G, Hauri D. Botulinum-A toxin for treating detrusor hyperreflexia in spinal cord injured patients: A new alternative to anticholinergic drugs? Preliminary results. J Urol 2000;164(3 Pt 1):692-697.

Image credits

  1. Botulinum toxin 3BTA ©Clr324, CC0 1.0
  2. Injection ©priyanka, CC BY 3.0 US
  3. Synapse ©Clker-Free-Vector-Images, CC0 1.0
  4. Injection ©Vectors Point, CC BY 3.0 US
  5. Pregnancy botox risk ©waldryano, CC0 1.0
  6. Pain botox ©3dman_eu, CC0 1.0
  7. Modified from: Urinary Sphincter ©BruceBlaus, CC BY-SA 4.0

 

Disclaimer: This document does not provide medical advice. This information is provided for educational purposes only. Consult a qualified health professional for further information or specific medical advice. The SCIRE Project, its partners and collaborators disclaim any liability to any party for any loss or damage by errors or omissions in this publication.

Pressure Injuries

By | | No Comments

Author: SCIRE Community Team | Reviewer: Susan Andrews | Published: 3 November 2017 | Updated: ~

Key Points

  • A pressure injury (or pressure ulcer, wound, or sore) is damage to the skin and underlying tissues caused by pressure, friction, or shear. Pressure injuries are common on weight-bearing areas of the body like the sit bones and tailbone.
  • Pressure injuries are a common complication of SCI that can have serious consequences including reduced independence and life-threatening infections.
  • People with SCI are at greater risk of developing pressure injuries because of changes to the body and how it is used after SCI.
  • Preventing pressure injuries is very important and involves checking the skin regularly, pressure relief, staying healthy, and early treatment of potential injuries.
  • The most important factor in treating a pressure injury is identifying and removing the cause of the injury.
  • Pressure injuries are treated using several treatments, including wound care and dressings, medications, electrical and light stimulation, debridement, and surgery.

Circular wound on the side of the ankle bones. Wound is slightly red with bits of yellow and weeping fluid. The wound is surrounded by light pink skin.

Pressure injury (stage 3) on the side of the ankle.1

A pressure injury (also known as pressure wound, pressure ulcer or bed sore) is a breakdown of the skin and the tissues under the skin that is caused by pressure, friction, or shear.

Pressure injuries are a common complication of SCI that happens because of changes to the body and how it is used after the injury. Pressure injuries usually happen on areas of the body that bear weight in sitting or lying, such as the sit bones, tailbone, heels, back of the knees, elbows, and shoulder blades.

Pressure injuries are common

Pressure injuries are common after SCI. They can affect as many as one third of people with SCI each year and almost every person with an SCI experiences at least one pressure injury in their lifetime. The risk of pressure injuries increases over time when living with an SCI long-term.

Pressure injuries can have serious consequences

Pressure injuries can have serious consequences for health, function, and quality of life, including:

  • Difficult and lengthy healing
  • Infections, including severe infections that lead to a life-threatening condition called sepsis
  • Long and costly hospital stays and re-hospitalizations
  • Reduced independence and mobility during healing
  • Inability to participate in work and school during healing
  • Reduced life satisfaction and quality of life
  • A greater need for assistance from caregivers and family during healing

Prevention is essential to reduce risk

The best management for pressure injuries is prevention. In fact, many pressure injuries are preventable through a combination of good self-care, staying healthy, and regular check-ins with your health team. It is essential to learn how to recognize, prevent, and treat pressure injuries as soon as possible after SCI to help reduce your risk.

Find out what advice Josh has on pressure sores and routines you can follow to avoid them.

Pressure injuries happen because of many different factors from both inside and outside the body. There are a number of changes to the body after SCI that make pressure injuries more likely. These factors, combined with forces like pressure, friction, and shear, can cause pressure injury.

Pressure

A silhouette of a person lying on a recliner chair with red circles highlighting common areas where pressure ulcers develop

Certain areas of the skin become more vulnerable to pressure depending on the body position.3

Pressure injuries usually form on weight-bearing areas of the body that are in contact with supporting surfaces. This usually happens when sitting or lying in the same position for a long time or when positioned on a surface that does not support the weight properly (such as a hard chair).

Pressure usually happens in specific areas depending on the position, but most often affects the sit bones (ischial tuberosities), tailbone (sacrum and coccyx), heels, backs of the knees, elbows, back of the head, and shoulder blades.

Too much pressure can prevent blood from reaching the area, which is important for bringing oxygen and nutrients to the tissues. This can lead to skin damage or breakdown. Skin breakdown can happen quite quickly (in even 30 to 60 minutes) on a hard surface without changing positions regularly.

Friction and shear

Picture showing a man transferring from his wheelchair onto a bed

The skin can experience friction and shear during wheelchair transfers.4

Pressure injuries can also be caused by friction and shear. Friction can happen when the skin is rubbed on a course surface, such as sitting on an uneven wrinkle of clothing or rough surface. This can cause injury to the surface of the skin which can lead to skin breakdown.

Shear is a type of force where the skin goes one way and the body goes the opposite direction. This usually happens when the skin is caught on a surface while the body is moved. For example, when transferring in bed, the skin might be pulled along the bed while the person shifts positions, which causes shear. Shear strains and injures the tissues close to the bone.

Most pressure injuries result from combinations of pressure, friction, and shear that happen in the deep tissues close to the bone. This leads to deep tissue injury, rather than injury on the skin’s surface.

There are many other factors from both inside and outside the body after SCI that make pressure injuries more likely to develop.

Other factors that contribute to pressure injuries

Changes to the skin

Spinal cord injury can affect the skin in various ways. The skin below the injury may become less elastic and weaker as a result of tissue changes caused by the SCI. In addition, people with injuries above T6 lose the ability to sweat below the injury, which means that body temperature is not regulated very well.

Loss of sensation

Sensation is important because it allows us to recognize discomfort and provides a cue to change position regularly. When sensation is reduced or absent, these cues are not present and we may sit in an uncomfortable position where there is too much pressure for too long.

Loss of movement

Loss of movement also contributes to pressure injuries. People with reduced movement often use a wheelchair as their main method of mobility, which may lead to long periods of sitting in one position. It may also be more difficulty to reposition in sitting or lying so pressure may be placed in one area for too long. As well, when the muscles are not used regularly, they shrink (called muscle atrophy), which means there is less padding between the skin and bone.

Hear Peter speak about his difficulties with not having sensation to his elbows.

Moisture

Moisture makes the skin more vulnerable to injury and bacteria. Moisture may be present because of bladder or bowel problems after an SCI or in warm and humid climates.

Body weight

Changes to body weight, either being too thin or overweight, can increase the risk of pressure injuries. When a person is underweight, there is less padding between the skin and bone. When a person is overweight, the body is heavier, which creates more pressure in weight-bearing and can also make transfers more difficult, which may result in more shearing and friction.

Supporting surfaces

A woman pushing a man on a wheelchairThe characteristics of surfaces that support the body in regular positions are very important for distributing pressure. This includes wheelchair cushions, mattresses, couch cushions, car seats, commode or toilet seats, sports equipment, and any other surface that is regularly used for supporting the body. Hard or unsupportive surfaces can contribute to developing pressure injuries. It is important to also consider surfaces in unfamiliar settings, such as when travelling or when a hospital visit is needed. Airplane seats and hospital stretchers do not often provide enough protection for your skin following SCI and you may need a lightweight travel cushion when travelling or to request a specialized surface if you need to visit a hospital.

Other factors:
  • Reduced ability to fight infections (reduced immune function)
  • Other medical conditions like infections, blood clots, spasticity and contractures
  • Poor nutrition (especially if there is not enough calories or protein)
  • Reduced physical activity
  • Smoking
  • Long periods of bed rest
  • The sit bones (ischial tuberosities) may become flatter over time
  • Higher level of injury and complete SCI
  • Depression
  • Reduced ability to perform behaviours that reduce risk, such as regular pressure relief, good skin care, and skin inspections

Pressure injuries are classified by how severe they are as “stages” of injury. These stages can range from just a small amount of redness on the skin to a wound that travels all the way down to the bone. Determining which stage a pressure injury is can help you and your health team to measure the extent of wounds and figure out how to treat it.

Stages of Pressure Injury (National Pressure Injury Advisory Panel)2

Stage 1 The skin is intact with an area of redness that does not go away after being off of it for 20 to 30 minutes.
Stage 2 There is a partially open wound that is the thickness of the skin (shallow) and typically red-pink in colour.
Stage 3 There is a full skin thickness opening (deeper than skin level) that has a mostly red or pink base with no bone or tendon visible. Minimal slough or it is called unstageable.
Stage 4 Full thickness skin opening which includes exposed bone, tendon and muscle and possibly slough. Both Stage 3 and 4 wounds may have tunnels or open areas that run under the skin.
Unstageable A wound that is covered with slough or black skin so it not open and the base of it cannot be seen. This type of sore is impossible to stage.
Deep tissue injury A wound that is dark purple or a blood filled blister. If the cause is addressed quickly these injuries can resolve without tissue loss but they can also develop into stage 4 pressure injuries depending on the extent of injury to the tissues.

To identify a pressure injury early you need to check your skin once or twice daily using a mirror or with the help of a care provider.

Physical examination

A light pink open wound with a disposable medical ruler held against it to measure the wound length by someone wearing gloves and a gown

Wounds may be measured and photographed to keep track of changes over time.7

The main way that pressure injuries are diagnosed is with a visual skin check. Checking by feel is not enough, because it only identifies open areas that can be felt. Early pressure injury can be as simple as red or purple discoloration to the skin.

If there is an open wound you may need to be seen by a physician and referred to a nurse for a wound assessment. This may involve starting a treatment plan that should include trying to identify the cause of the pressure injury.

The nurse will observe the wound and take note of its appearance (such as its edges, colour, and shape) and look for signs of inflammation or infection. The nurse may take measurements of the length, width, and depth of the wound. These can help determine the stage of the wound and be used as a comparison as it heals. Sometimes, the nurse may take photos for assessment purposes. A swab of the pressure sore is only taken if infection is suspected. Infection is suspected if there has been increased redness, odour or drainage or if pain has increased if you have sensation.

It is often helpful to have an occupational therapist or physiotherapist involved to help figure out the cause of tissue damage.

Listen to Josh describe his experience of having a pressure sore he wasn’t aware of and how he overcame it with the help of a specialist.

Other testing

  • Blood tests may be used to identify if there is an infection.
  • Ultrasound is an imaging technique that may be used in some facilities. Ultrasound imaging uses sound waves to detect injuries deep within the skin. It may be used to detect suspected pressure injuries that are not easily seen.

Osteomyelitis (bone infection)

When pressure injuries are severe and reach all the way to the bone (stage 4), there is a risk of developing a serious bone infection called osteomyelitis. If your health team is concerned that you might have osteomyelitis, you may have additional testing such as x-rays, an MRI, or blood tests to diagnose this condition.

A healthcare professional providing education to a man who sits in front of her

Your healthcare provider can provide education on pressure injury prevention and skin care.8

The most important part of managing pressure injuries is preventing them from happening in the first place. Many different techniques may be used to prevent pressure injuries. Some of these are a part of self-care and others involve working together with your health team.

Learning how to prevent pressure injuries

Early on in your care, your health providers will speak to you about how to prevent pressure injuries. This may be a part of one-on-one care or as a part of a group education class. Prevention education is a very important part of reducing risk. You will learn how to identify skin concerns early on and the best techniques for you to keep your skin healthy.

Maintaining good skin care

Regular skin care is an important part of preventing pressure injuries. Many of these techniques you will learn as a part of skincare education.

Regular skin checks

Checking the skin for changes in color and texture is important to recognize areas of risk and to identify any changes early. The main areas to check are bony areas, like the sit bones, tail bone, side of the hips, and heels. A mirror or assistance from a caregiver may be needed to check some areas. Any areas of redness, bruising, or injury should be discussed with your health providers immediately. Skin checks are recommended once or twice daily or after activities like prolonged bed rest or trying new equipment.

Listen to Peter describe how he regularly checks his elbows to maintain good skin health.

Keeping the skin healthy

Droplets of sweat on skinRegular skin care should be done using a gentle pH-balanced skin cleanser and moisturizer. The skin should always be treated gently and not rubbed or massaged forcefully The skin should be kept dry using loose fitting clothes made of light weight fabrics and protecting the skin from excess moisture. Avoid clothing with thick seams or pockets like denim that can contribute to tissue damage.

Regular pressure relief

Pressure relief techniques are positions and movements that remove pressure and give the tissues a chance to regain proper blood flow. You should discuss with your health providers about which positions are best for you and how often and for how long they should be done for. Keep in mind that moving into pressure relieving positions should not involve pulling or shearing of the skin while re-positioning.

Depending on your level of injury, some people are able to re-position themselves or need a small amount of assistance. People with higher level SCI can use the functions of their wheelchairs or equipment to weight shift or may rely more on caregivers and family to provide assistance.

Pressure relief techniques

A woman lifting up her buttocks off her wheelchair by straightening her arms

Pressure can be relieved by lifting the buttocks off the seat.10

  • For power wheelchair users, tilting or reclining the chair backwards for a period of time
  • For manual wheelchair users, techniques such as leaning forward and propping the elbows onto the knees, lifting the buttocks off the seat by straightening your arms on the armrests, or leaning to one side
  • When in bed, techniques such as turning every 2-3 hours, placing pillows between knees and behind the back when lying on your side, and using a suitable pressure relieving surface

This is not a complete or instructive list of pressure relief techniques. Speak to your health provider for detailed instructions on how to perform pressure relief techniques. How-to instructions for some techniques are illustrated on the Spinal Cord Essentials website.

 

Pressure relief is usually recommended every 15 to 30 minutes to replenish blood flow to vulnerable areas of the skin and held for at least 1 to 2 minutes.

Pressure mapping

Pressure map placed on a wheelchair (left), flexible pressure map (center), and diagram of pressure of a person’s buttocks in sitting (right). Areas of pressure are indicated from high pressures in red (around the sit bones) to lower pressures in blue.1

Pressure map placed on a wheelchair (left), flexible pressure map (center), and diagram of pressure of a person’s buttocks in sitting (right). Areas of pressure are indicated from high pressures in red (around the sit bones) to lower pressures in blue.11

Pressure mapping is a technique that involves the use of a pressure-sensitive mat and computer system to identify areas of increased pressure. Pressure mapping may help your health provider make recommendations about reducing pressure, including selecting appropriate equipment and finding out which pressure relief positions work best for you.

To learn more, check out our article on Pressure Mapping!

 

Using appropriate equipment and seating

Appropriately fitted equipment like wheelchairs, cushions, and bedding can help to maintain healthy skin. During rehabilitation, you may work with your health providers or attend a special clinic where you receive advice on selecting equipment and the correct use of the equipment.

The team will recommend seat cushions, backrests, commodes, and mattresses to help manage pressure in at-risk areas. Regular check-ins at the clinic may also be needed. Most equipment needs to be reviewed and replaced periodically. For example a padded raised toilet seat that has rips or is worn out can be a cause of a pressure injury.

Keeping a healthy lifestyle

Adopting a healthy diet, exercising regularly, and avoiding smoking are simple steps to help maintain healthy skin.

Nutrition

A healthy diet with enough fluids, calories, and protein provides the nutrients and vitamins needed to maintain healthy skin. It also helps in maintaining a healthy body weight. A dietician can help you learn how to eat well to prevent pressure injuries and can advise you on the nutrition you need for healing should you develop a pressure injury.

Avoiding smoking

A group of men on wheelchairs playing basketball with one man about to take a shotSmoking is a risk factor for pressure injuries because smoking prevents oxygen from reaching the tissues and worsens overall health.

Exercising regularly

Exercise helps to increase circulation (which carries oxygen and nutrients throughout the body) and maintain overall health. Exercise may also help to maintain muscle bulk which creates padding between the skin and bone.

Electrical stimulation

Although it may seem strange, electrical stimulation is a treatment which may help to prevent pressure injuries. Electrical stimulation on its own can help to increase blood flow and oxygen supply to the body tissues. Electrical stimulation during exercise (functional electrical stimulation) may help to maintain muscle mass that pads areas under the skin.

Many people avoid doing regular pressure injury prevention because it can be time-consuming and difficult. If you are having trouble finding the time to fit these techniques in, it may be time to get support. Speak to your health providers about this issue and see if you can work together to come up with ways that you can make pressure relief and skin care a part of your daily activities so you have enough time to participate in everything that is important to you. Some people find the following tips helpful:

  • Make skin care a regular part of your routine, just like brushing your teeth – have everything you needs (a mirror, skin care supplies) easily available where you can use them each day and do your routine at the same time every day
  • Ask for help from caregivers and family for help with techniques or reminders to maintain good skin care
  • Put a timer on your phone or watch to remind you to shift positions regularly.

Peer support

Many places also have peer support programs where people living with SCI can connect and support one another. Peers can offer firsthand knowledge and experience that may help you find the right techniques for your lifestyle. Online support groups and apps may also help you connect with support from people living with SCI.

Organizations that may offer peer support can be found on our Organizations and Foundations Resource page.

Discover how Peter manages pressure sores with his wound care nurse.

Find out how Josh learns how to take care of his pressure sores at home with his wound care nurse.

There are a number of different treatments for pressure injuries. Treatments may be used to reduce pressure or shearing to the wound, keep the wound clean and protected to reduce the risk of infection, and aid circulation and healing. Treatment for pressure sores is the responsibility of the whole health team, so you may work with many different professionals.

Dressings

Wound dressings help to protect the wound, absorb drainage from the wound, and prevent bacteria from entering while also allowing it to breathe. There are many different types of dressings that may be used for pressure sores. Your nurse will help to decide which dressings to use and how often they need to be changed.

Medications

Cartoon capsulesAntibiotics are used as needed to treat infections in the soft tissues or when osteomyelitis (bone infection) is present. Topical antimicrobial treatments are sometimes applied to the wound to reduce bacteria to try to prevent infection and support healing.

Energy-based therapies

A number of different energy-based therapies may also be used to treat pressure injuries. These treatments are done to help increase circulation, kill bacteria, and promote healing.

Electrical stimulation

Electrical stimulation may be applied to pressure injuries through electrodes connected to a small device. Studies suggest that electrical stimulation works to help with healing of severe wounds (stage 3 and 4) after SCI.

Ultraviolet C light

Ultraviolet C light may be applied to a wound using special light bulbs and equipment. Ultraviolet C light has antibacterial effects on wounds. Research suggests that Ultraviolet C is effective for helping treat pressure injuries after SCI.

Debridement

Debridement is a method of removing dead tissue and debris from wounds. There are several methods used to debride wounds and your wound care nurse or physician will choose the method that is right for you. Types of debridement may include:

  • A team of healthcare professionals in masks preparing for debridement beside the patient who is lying down

    Debridement promotes healing by removing unhealthy tissue from the wound.15

    Surgical debridement by a surgeon under anesthesia

  • Sharp debridement using sterile scissors performed by a wound care nurse
  • Maggot therapy, which involves using maggots to selectively remove only the dead tissue
  • Enzymatic debridement, which involves using enzymes to help dissolve the dead tissue
  • Autolytic debridement, when moisture is added to the wound as needed to help the dead tissue debride from the wound

Debridement is only needed if there is slough or unhealthy yellow black tissue in the wound base and should only be done when there is enough circulation for healing to occur.

Flap reconstruction surgery

Surgery may be an option if the wound does not improve with other treatments. This is typically only used for stage 3 or stage 4 injuries. The procedure for closing these wounds is called flap reconstruction surgery. Flap reconstruction involves removing the wound and surrounding tissue and covering it with other nearby tissues, such as muscles and skin. After this type of surgery, careful procedures must be followed before you can get up and moving safely.

Amputation

Amputation may sometimes be necessary if a wound gets severely infected and the infection moves into nearby tissues. This is more commonly seen in legs and feet.

Negative pressure treatments

Negative pressure wound treatments involve the use of a vacuum which applies suction to a wound that is covered with a wound dressing. This helps to manage drainage and increase circulation. A negative pressure dressing should only be used when the wound is clean and pink healthy tissue and when the cause of the pressure injury has been addressed.

Other pressure injury treatments

There are many other medical, alternative, and physical treatments that may be used in the treatment of pressure injuries. Speak to your wound care team about any treatments you are considering trying.

Pressure injuries are a common and serious complication of SCI. Many pressure injuries are largely preventable through a combination of regular skin care, pressure relief, staying healthy, and early treatment of potential injuries.

Treatment of pressure sores may involves wound care, electrical and light stimulation, prevention and treatment of infections that may occur, and surgery for severe wounds. Speak with your health providers to discuss your prevention and treatment options to find out which ones are best for you.

For a review of how we assess evidence at SCIRE Community and advice on making decisions, please see SCIRE Community Evidence.

Parts of this page have been adapted from the SCIRE Professional “Skin Integrity and Pressure Injuries” Module:

Hsieh J, McIntyre A, Wolfe D, Lala D, Titus L, Campbell K, Teasell R. (2014). Pressure Ulcers Following Spinal Cord Injury. In Eng JJ, Teasell RW, Miller WC, Wolfe DL, Townson AF, Hsieh JTC, Connolly SJ, Noonan VK, Loh E, McIntyre A, editors. Spinal Cord Injury Rehabilitation Evidence. Version 5.0. 1-90.
Available from: https://scireproject.com/evidence/skin-integrity-and-pressure-injuries/

Adegoke BO, Badmos KA. Acceleration of pressure ulcer healing in spinal cord injured patients using interrupted direct current. Afr J Med Med Sci 2001;30:195-197.

Ahluwalia R, Martin D, Mahoney JL. The operative treatment of pressure wounds: a 10-year experience in flap selection. Int Wound J 2010;7(2):103-106.

Biglari B, Büchler A, Reitzel T, Swing T, Gerner HJ, Ferbert T, Moghaddam A. A retrospective study on flap complications after pressure ulcer surgery in spinal cord-injured patients. Spinal Cord 2014;52:80-83.

Banks, PG, Ho, CH. A novel topical oxygen treatment for chronic and difficult-to-heal wounds: case studies. Journal of Spinal Cord Medicine 2008;31:297-301.

Bauman WA, Spungen AM, Collins JF, Raisch DW, Ho C, Deitrick GA, et al. The effect of oxandrolone on the healing of chronic pressure ulcers in persons with spinal cord injury: a randomized trial. Ann Int Med 2013; 158(10):718-726.

Bergstrom N, Braden BJ, Laguzza A, Holman V. The Braden Scale for Predicting Pressure Sore Risk. Nurs Res 1987;36:205-210.

Bertheuil N, Huguier V, Aillet S, Beuzeboc M, Watier E. Biceps femoris flap for closure of ischial pressure ulcers. Eur J Plast Surg 2013;6(10):639-644.

Biglari B, Büchler A, eitzel T, Swing T, Gerner H J, Ferbert T, et al. Moghaddamspective study on flap complications fter pressure ulcer surgery in spinal cord-injured patients. Spinal cord 2013; 52(1):80-83.

Bogie KM, Ho CH. Pulsatile lavage for pressure ulcer management in spinal cord injury: a retrospective clinical safety review. Ostomy Wound Manage 2013;59(3):35-38.

Bogie KM, Reger SI, Levine SP, Sahgal V. Electrical stimulation for pressure sore prevention and wound healing. Assist Technol 2000;12:50-66.

Bogie KM, Triolo RJ. Effects of regular use of neuromuscular electrical stimulation on tissue health. J Rehabil Res Dev 2003;40:469-475.

Borgognone A, Anniboletti T, De Vita F, Schirosi M, Palombo P. Ischiatic pressure sores: our experience in coupling a split-muscle flap and a fasciocutaneous flap in a ‘criss-cross’ way. Spinal Cord 2010;48(10):770-773.

Brace JA, Schubart JR. A prospective evaluation of a pressure ulcer prevention and management E-learning program for adults with spinal cord injury. Ostomy Wound Management 2010;56(8):40-50.

Brewer S, Desneves K, Pearce L, Mills K, Dunn L, Brown D, et al. Effect of an arginine-containing nutritional supplement on pressure ulcer healing in community spinal patients. J Wound care 2010;19:7:311-316.

Byrne DW, Salzberg CA. Major risk factors for pressure ulcers in the spinal cord disabled: a literature review. Spinal Cord 1996;34:255-263.

Chen W, Jiang B, Zhao J, Wang P. The superior gluteal artery perforator flap for reconstruction of sacral sores. Saudi Med J 2016;37(10):1140-1143.

Coggrave M, West H, Leonard B. Topical negative pressure for pressure ulcer management. Br J Nurs 2002;11(6):29-36.

Consortium for Spinal Cord Medicine. Pressure ulcer prevention and treatment following spinal cord injury: A clinical practice guideline for health care professionals (pp. 1-77). 2000.

Cukjati D, Robnik-Šikonja M, Reberšek S, Kononenko I, Miklavčič D. Prognostic factors in the prediction of chronic wound healing by electrical stimulation. Med and Bio Eng and Comp 2001;39(5):542-550.

de Angelis B, Lucarini L, Agovino A, Migner A, Orlandi F, Floris M, et al. Combined use of super-oxidised solution with negative pressure for the treatment of pressure ulcers: case report. Int Wond J 2013;10(3):36-339.

de Laat EH, van den Boogaard MH, Spauwen PH, van Kppevelt DH, van Goor H, Schoonhoven L. Faster wound healing with topical negative pressure therapy in difficult-to- heal wounds: a prospective randomized control trial. Ann Plast Surg 2011;67(6):626-631.

Erba P, Wettstein R, Schumacher R, Schwenzer-Zimmerer K, Pierer G, Kalbermatten DF. Silicone moulding for pressure sore debridement. J Plast Reconstr Aesthe Surg 2010;63(3):550-553.

Ferguson AC, Keating JF, Delargy MA, Andrews BJ. Reduction of seating pressure using FES in patients with spinal cord injury: a preliminary report. Paraplegia 1992;30(7):474-478.

Fuhrer MJ, Garber SL, Rintala DH, Clearman R, Hart KA. Pressure ulcers in communityresident persons with spinal cord injury: prevalence and risk factors. Arch Phys Med Rehabil 1993;74(11):1172-1177.

Garber SL, Rintala DH, Holmes SA, Rodriguez GP, Friedman J. A structured educational model to improve pressure ulcer prevention knowledge in veterans with spinal cord dysfunction. J Rehab Res Dev 2002;39(5):575-588.

Grassetti L, Scalise A, Lazzeri D, Carle F, Agostini T, Gesuita R, et al. Perforator flaps in late-stage pressure sore treatment: outcome analysis of 11-year-long experience with 143 patients. Ann Plast Surg 2014;73(6):679-685.

Griffin JW, Tooms RE, Mendius RA, Clifft JK, Vander ZR, El Zeky F et al. Efficacy of high voltage pulsed current for healing of pressure ulcers in patients with spinal cord injury. Phys Ther 1991;71:433-444.

Guihan M, Smith BM, LaVela SL, Garber SL. Factors predicting pressure ulcers in veterans with spinal cord injuries. Amer Journ of Phys Med & Rehab 2008;87(9):750-7.

Gyawali S, Solis L, Chong SL, Curtis C, Seres P, Kornelsen I, et al. Intermittent electrical stimulation redistributes pressure and promotes tissue oxygenation in loaded muscles of individuals with spinal cord injury. Journ Appl Physiol 2011;110(1):246-255

He J, Xu H, Wang T, Ma S, Dong J. Treatment of complex ischial pressure sores with free partial lateral latissimus dorsi musculocutaneous flaps in paraplegic patients. J Plast Reconstr Aesthet Surg 2012;65(5):634-639.

Ho CH, Bensitel T, Wang X, Bogie KM. Pulsatile lavage for the enhancement of pressure ulcer healing: a randomized controlled trial. Phys Ther 2012;92(1):38-48.

Hollisaz MT, Khedmat H, Yari F. A randomized clinical trial comparing hydrocolloid, phenytoin and simple dressings for the treatment of pressure ulcers [ISRCTN33429693]. BMC Dermatol 2004; 4:18.

Houghton PE, Campbell KE and CPG Panel. Canadian best practice guidelines for the prevention and management of pressure ulcers in people with spinal cord injury: A resource handbook for clinicians. Accessed at http://www.onf.org. 2013.

Houghton PE, Campbell KE, Fraser CH, Harris C, Keast DH, Potter PJ et al. Electrical stimulation therapy increases rate of healing of pressure ulcers in community-dwelling people with spinal cord injury. Arch Phys Med Rehabil 2010;91(5):669-678.

Houlihan BV, Jette A, Friedman AH, Paasche-Orlow M, Ni P, Wierbicky J, et al. A pilot study of a telehealth intervention for persons with spinal cord dysfunction. Spinal Cord 2013;51(9):715– 720.

Jercinovic A, Karba R, Vodovnik L, Stefanovska A, Kroselj P, Turk R, et al. Low frequency pulsed current and pressure ulcer healing. Rehab Eng IEEE Transactions on 1994;2(4):225-233.

Kanno N, Nakamura T, Yamanaka M, Kouda K, Nakamura T, Tajima F. Low-echoic lesions underneath the skin in subjects with spinal-cord injury. Spinal cord 2008;47(3):225-229.

Karba, R., Semrov, D., Vodovnik, L., Benko, H., & Savrin, R. DC electrical stimulation for chronic wound healing enhancement. Part 1. Clinical study and determination of electrical field distribution in the numerical wound model. Bioelectrochemistry and Bioenergetics.1997;43:265-270.

Kaya AZ, Turani N, Akyuz M. The effectiveness of a hydrogel dressing compared with standard management of pressure ulcers. Journal of Wound Care 2005;14:42-44.

Keast DH, Fraser C. Treatment of chronic skin ulcers in individuals with anemia of chronic disease using recombinant human erythropoietin (EPO): a review of four cases. Ostomy Wound Manage 2004;50:64-70.

Kennedy P, Berry C, Coggrave M, Rose L, Hamilton L. The effect of a specialist seating assessment clinic on the skin management of individuals with spinal cord injury. J Tissue Viability 2003;13(3):122-125.

Kierney PC, Cardenas DD, Engrav LH, Grant JH, Rand RP. Limb-salvage in reconstruction of recalcitrant pressure sores using the inferiorly based rectus abdominis myocutaneous flap. Plast Reconstr Surg 1998;102(1):111-116.

Kim JT, Kim YH, Naidu S. Perfecting the design of the gluteus maximus perforator-based island flap for coverage of buttock defects. Plast Reconstr Surg 2010;125(6):1744-1751.

Krause JS. Skin sores after spinal cord injury: relationship to life adjustment. Spinal Cord 1998;36(1):51-56.

Lin H, Hou C, Chen A, Xu Z. Long-term outcome of using posterior-thigh fasciocutaneous flaps for the treatment of ischial pressure sores. J Reconstr Microsurg 2010;26(6):355-358.

Liu X, Meng Q, Song H, Zhao T. A traditional Chinese herbal formula improves pressure ulcers in paraplegic patients: A randomized, parallel-group, retrospective trial. Exp Ther Med 2013;5(6):1693-1696.

Loerakker S, Huisman ES, Seelen HA, Glatz JF, Baaijens FP, Oomens CW, et al. Plasma variations of biomarkers for muscle damage in male nondisabled and spinal cord injured subjects. Journ of Rehab Research and Develop 2012;49(3):361-372.

López de Heredia L, Hauptfleisch J, Hughes R, Graham, A, Meagher TM. Magnetic Resonance Imaging of Pressure Sores in Spinal Cord Injured Patients: Accuracy in Predicting Osteomyelitis. Topics in Spinal Cord Injury Rehab 2012;18(2):146-148.

Lui QL, Nicholson GP, Knight SL, Chelvarajah R, Gall A, Middleton FRI, Ferguson-Pell MW, Craggs MD. Pressure changes under the ischial tuberosities of seated individuals during sacral nerve root stimulation. J Rehabil Res Dev 2006;43:209-218.

Lui QL, Nicholson GP, Knight SL, Chelvarajah R, Gall A, Middleton FRI, Ferguson-Pell MW, Craggs MD. Interface pressure and cutaneous hemoglobin and oxygenation changes under ischial tuberosities during sacral nerve root stimulation in spinal cord injury. J Rehabil Res Dev 2006a;43:553-564.

Mawson AR, Siddiqui FH, Connolly BJ, Sharp CJ, Stewart GW, Summer WR, et al. Effect of high voltage pulsed galvanic stimulation on sacral transcutaneous oxygen tension levels in the spinal cord injured. Paraplegia 1993;31(5):311-319.

May L, Day R, Warren S. Evaluation of patient education in spinal cord injury rehabilitation: Knowledge, problem-solving and perceived importance. Disabil Rehabil, 2006;28(7):405–413.

Mehta A, Baker TA, Shoup M, Brownson K, Amde S, Doren E, et al. Biplanar flap reconstruction for pressure ulcers: experience in patients with immobility from chronic spinal cord injuries. Am J Surg 2012;203(3):303-306.

Mortenson WB, Miller WC. A review of scales for assessing the risk of developing a pressure ulcer in individuals with SCI. Spinal Cord 2008;46(3):168-175.

National Pressure Ulcer Advisory Panel, European Pressure Ulcer Advisory Panel and Pan Pacific Pressure Injury Alliance. Prevention and Treatment of Pressure Ulcers: Quick Reference Guide. Emily Haesler (Ed.). Cambridge Media: Osborne Park, Western Australia; 2014.

Nussbaum E, Flett H, McGillivray C. Ultraviolet-C (UVC) improves wound healing in persons with spinal cord injury (SCI). Presented at the International Conference on Spinal Cord Medicine and Rehabilitation in Washington, DC; June 4–8, 2011.

Nussbaum EL, Biemann I, Mustard B. Comparison of ultrasound/ultraviolet-C and laser for treatment of pressure ulcers in patients with spinal cord injury. Phys Ther 1994;74:812-823.

Relander M, Palmer B. Recurrence of surgically treated pressure sores. Scand J Plast Reconstr Surg Hand Surg 1988;22(1):89-92.

Rintala DH, Garber SL, Friedman JD, Holmes SA. Preventing recurrent pressure ulcers in veterans with spinal cord injury: impact of a structured education and follow-up intervention. Arch of Phys Med and Rehab 2008;89(8):1429-1441.

Rintala, D. H., Garber, S. L., Friedman, J. D., & Holmes, S. A. Preventing recurrent pressure ulcers in veterans with spinal cord injury: impact of a structured education and follow-up intervention. Archives of Physical Medicine & Rehabilitation. 2008;89:1429-1441

Salzberg CA, Byrne DW, Cayten CG, van Niewerburgh P, Murphy JG, Viehbeck M. A new pressure ulcer risk assessment scale for individuals with spinal cord injury. Amer Journ Phys Med Rehab 1996;75(2):96-104.

Salzberg CA, Cooper-Vastola SA, Perez F, Viehbeck MG, Byrne DW. The effects of non-thermal pulsed electromagnetic energy on wound healing of pressure ulcers in spinal cord-injured patients: a randomized, double-blind study. Ostomy Wound Manage 1995;41:42-4,46,48.

Scevola S, Nicoletti G, Brenta F, Isernia P, Maestri M, Faga A. Allogenic platelet gel in the treatment of pressure sores: a pilot study. Int Wound J 2010;7(3):184-190.

Schubart J. An E-learning program to prevent pressure ulcers in adults with spinal cord injury: A pre- and post- pilot test among rehabilitation patients following discharge to home. Ostomy Wound Management 2012;58(10):38-49.

Sell SA, Ericksen JJ, Reis TW, Droste LR, Bhuiyan MB, Gater DR. A case report on the use of sustained release platelet-rich plasma for the treatment of chronic pressure ulcers. The Journ of Spinal Cord Med 2011;34(1):122.

Sherman RA, Wyle F, Vulpe M. Maggot therapy for treating pressure ulcers in spinal cord injury patients. J Spinal Cord Med 1995;18:71-74.

Singh R, Singh R, Rohilla RK, Siwach R, Verma V, Kaur K. Surgery for pressure ulcers improves general health and quality of life in patients with spinal cord injury. J Spinal Cord Med 2010;33(4):396-400.

Smit CA, Haverkamp GL, de Groot S, Stolwijk-Swuste JM, Janssen TW. Effects of electrical stimulation-induced gluteal versus gluteal and hamstring muscles activation on sitting pressure distribution in persons with a spinal cord injury. Spinal cord 2012;50(8):590-594.

Smit CA, Legemate KJ, de Koning A, de Groot S, Stolwijk-Swuste JM, Janssen,TW. Prolonged electrical stimulation-induced gluteal and hamstring muscle activation and sitting pressure in spinal cord injury: Effect of duty cycle. Journ of Rehab Res Dev 2013;50(7):1035-1046.

Smit CA, Zwinkels M, van Dijk T, de Groot S, Stolwijk-Swuste JM, Janssen TW. Gluteal blood flow and oxygenation during electrical stimulation-induced muscle activation versus pressure relief movements in wheelchair users with a spinal cord injury. Spinal cord 2013;51(9):694-699.

Srivastava A, Gupta A, Taly AB, Murali T. Surgical management of pressure ulcers during inpatient neurologic rehabilitation: outcomes for patients with spinal cord disease. J Spinal Cord Med 2009;32(2):125-131.

Subbanna, P. K., Margaret Shanti, F. X., George, J., Tharion, G., Neelakantan, N., Durai, S. et al. Topical phenytoin solution for treating pressure ulcers: A prospective, randomized, double-blind clinical trial. Spinal Cord. 2007;45:739-743

Taly AB, Sivaraman Nair KP, Murali T, John A. Efficacy of multiwavelength light therapy in the treatment of pressure ulcers in subjects with disorders of the spinal cord: A randomized double-blind controlled trial. Arch Phys Med Rehabil 2004;85:1657-1661.

Tavakoli K, Rutkowski S, Cope C, Hassall M, Barnett R, Richards M, et al. Recurrence rates of ischial sores in para- and tetraplegics treated with hamstring flaps: an 8-year study. Br J Plast Surg 1999;52(6):476-479.

Tzen YT, Brienza DM, Karg PE, Loughlin PJ. Effectiveness of local cooling for enhancing tissue ischemia tolerance in people with spinal cord injury. The journal of spinal cord medicine, 2013;36(4):357-364.

Unal C, Ozdemir J, Yirmibesoglu O, Yucel E, Agir H. Use of inferior gluteal artery and posterior thigh perforators in management of ischial pressure sores with limited donor sites for flap coverage. Ann Plast Surg 2012;69(1):67-72.

van Londen A, Herwegh M, van der Zee CH, Daffertshofer A, Smit CA, Niezen A, Janssen TW. The effect of surface electric stimulation of the gluteal muscles on the interface pressure in seated people with spinal cord injury. Arch of Phys Med and Rehab 2008;89(9):1724-1732.

Vesmarovich S, Walker T, Hauber RP, Temkin A, Burns R. Use of telerehabilitation to manage pressure ulcers in persons with spinal cord injuries. Adv Wound Care 1999;12(5):264-269.

Wang SY, Wang JN, Lv DC, Diao YP, Zhang Z. Clinical research on the bio-debridement effect of maggot therapy for treatment of chronically infected lesions. Orthop Surg 2010;2(3):201-206.

Image credits:

  1. Reprinted with permission of the copyright holder, Gordian Medical, Inc. dba American Medical Technologies (courtesy of National Pressure Ulcer Advisory Panel)
  2. Hospital ©Icons Producer, CC BY 3.0
  3. Modified from: Man Resting on Long Chair ©Gan Khoon Lay, CC BY 3.0
  4. Image by SCIRE Community Team
  5. Image by SCIRE Community Team
  6. Images of pressure ulcer stages used with permission and copyright NPUAP
  7. Image by SCIRE Community Team
  8. Image by SCIRE Community Team
  9. Sweaty-skin ©Jo Andre Johansen, CC BY-SA 2.0
  10. Image by SCIRE Community Team
  11. Image from Cho KH, Beom J, Yuk JH, Ahn SC. The Effects of Body Mass Composition and Cushion Type on Seat-Interface Pressure in Spinal Cord Injured Patients. Ann Rehabil Med. 2015 Dec;39(6):971-9. doi: 10.5535/arm.2015.39.6.971. Epub 2015 Dec 29. Published online 2015 Dec 29. doi: 10.5535/arm.2015.39.6.971 (CC BY-NC 4.0)
  12. CWSC Panthers ©DSC_0284, CC BY-SA 2.0
  13. Mirror ©Vectors Market, CC BY 3.0
  14. Pills ©Sketch2SVG, CC BY 3.0
  15. MEDRETE 16-2 ©US Army Africa. CC BY 2.0

 

Disclaimer: This document does not provide medical advice. This information is provided for educational purposes only. Consult a qualified health professional for further information or specific medical advice. The SCIRE Project, its partners and collaborators disclaim any liability to any party for any loss or damage by errors or omissions in this publication.

Urinary Catheters

By | | No Comments

Author: SCIRE Community Team | Reviewer: Bonnie Nybo | Published: 24 October 2017 | Updated: ~

Urinary catheters are a common method of emptying the bladder after spinal cord injury (SCI). This page provides basic information about the use of catheters for bladder problems after SCI.

Key Points

  • Urinary catheters are pieces of equipment that are used to drain urine from the bladder for people who experience bladder problems after SCI.
  • There are several ways of using catheters, including intermittent catheterization (a catheter that is inserted and removed from the bladder several times each day), indwelling catheters (a catheter that is inserted into the bladder and remains in place), and condom catheters (external catheters that cover the penis).
  • Urinary catheters may have risks with their use, such as damage to the urethra, bladder stones, and urinary tract infections.
  • Choosing a type of catheter to use and developing a bladder management routine should happen together with your health team based on the type of bladder problems you have and your risk of complications, ability to use the equipment, and personal preferences.
  • Catheters are an essential standard treatment for emptying the bladder after SCI. The research evidence suggests that intermittent catheterization is associated with the lowest risk of complications after SCI, followed by condom catheters, and then indwelling catheters.
A urinary catheter with a balloon at one end

There are various types of urinary catheters such as balloon catheters (above).1

Urinary catheters (simply referred to as ‘catheters’ on this page) are pieces of equipment that are used to drain urine from the bladder

Most catheters are thin tubes that are inserted directly into the bladder through the urethra (the duct that leads urine out of the bladder), but can also be placed outside of the body in males (condom catheters). These tubes allow urine to drain out of the bladder into a collection device such as a collection bag. There are several different types of catheters that are available, including single-use catheters and lubricated (hydrophilic) catheters.

Urinary catheters are used after SCI to help drain urine from the bladder in those who have difficulty emptying the bladder due to neurogenic bladder.

Many people experience bladder problems after spinal cord injury. SCI can lead to a loss of coordination between the brain and bladder, which can lead to irregular draining and filling of the bladder known as neurogenic bladder

There are two main types of neurogenic bladder, which may involve either a bladder that does not have the reflexes to empty itself (flaccid bladder) or a bladder that has unpredictable reflexes that cause it to empty (spastic bladder). Neurogenic bladder can lead to leaking of urine, incomplete emptying, and overfilling of the bladder, which can stretch and damage the bladder and kidneys.

Urinary catheters are the main technique that is used to allow for bladder emptying in people with neurogenic bladder after SCI.

Complications of poor bladder management

Regularly draining the bladder is a very important part of taking care of the body after SCI. Several serious complications can happen if bladder management is not successful:

Image showing the urinary system. Bottom right image shows a person's abdomen with two bean-shaped kidneys connecting by tubes labelled 'ureters' to the bladder (just above the pubic bone). Enlargement top left shows the bladder surrounded by a smooth muscle labelled 'bladder wall muscle'. Urine is contained in the bladder. The bladder connect downward to a tube labelled 'urethra'. The exit of the bladder to the urethra has muscles surrounding it labelled 'bladder sphincter muscles'.

Urine may back up into the kidneys if the bladder overfills.2

• When the bladder is not emptied regularly, it can continue to fill and may back up into the kidneys, which can cause damage to the kidneys.

• Overfilling of the bladder can also trigger a dangerous blood pressure response in some people with injuries at T6 and above called autonomic dysreflexia.

• Poor bladder management can contribute to urinary tract infections, which, in severe cases can lead to a life-threatening blood infection called sepsis.

• Leakage of urine can also contribute to the development of pressure sores, which can also be susceptible to dangerous infections.

There are several different types of catheters that may be used for bladder problems after SCI. The type of catheter chosen depends on the type of bladder dysfunction that you have (i.e. flaccid bladder or spastic bladder), as well as other factors like other health conditions, your self-care routines at home, level of independence, funding and lifestyle. It is important that you discuss your unique situation with your health providers to find the best treatment options for you.

Intermittent catheterization

The most common method of emptying the bladder after SCI is intermittent catheterization. Intermittent catheterization involves inserting and removing a catheter into the bladder through the urethra on a regular schedule during the day (usually every 4 to 6 hours) to drain urine from the bladder.

A cartoon calendarThe timing of intermittent catheterization is important. Maintaining a regular schedule of bladder draining can help to prevent urine leakage and bladder overfilling. Your unique bladder schedule will depend on the type of bladder dysfunction you have and other factors like fluid intake.

Depending on the situation, intermittent catheterization may be performed by you, a caregiver, or a health provider. There are many different techniques that may be used to insert the catheter depending on level of hand function and whether you are a male or female.

However, it is very important for all individuals to maintain good hygiene each time intermittent catheterization is used, which includes washing your hands and genitals before inserting a new single use catheter and thoroughly cleaning and drying (moisture attracts bacteria) if reusing your catheters.  If funding allows – reusing catheters is not recommended.

Indwelling catheters

Indwelling catheters (or Foley catheters) are tubes that are inserted directly into the bladder and remain in place to continually drain urine from the bladder.

A thin tube (catheter) is shown travelling up the urethra to the bladder. A zoom in image shows a small balloon that is inflated to hold the tube in place.

An indwelling (Foley) catheter is inserted through the urethra and held in place in the bladder by a small balloon.4

In most cases, indwelling catheters are inserted in through the urethra and into the bladder (known as urethral catheters). Once in the bladder, the very end of the catheter has a small balloon around it, which can be inflated to hold the catheter in place.

Indwelling catheters can also be inserted through a surgically created hole through the abdomen just above the public bone into the bladder called a stoma. These are called suprapubic catheters. Suprapubic catheters may be recommended as a later option for people who have medical complications or other reasons that make it difficult to use urethral catheters, such as intimacy.

Indwelling catheters may be used as a treatment option for people who are not able to insert a catheter regularly to perform intermittent catheterization, to allow for constant drainage of the bladder, and for people who have too much leaking of urine between uses of intermittent catheterization. Indwelling catheters are typically changed and replaced using sterile technique about once per month. Securement straps are recommended to secure indwelling catheter tubing as well as urine drainage bag tubing.

However, there are risks of having a catheter in the bladder all the time, such as increased risk of infections, sediment and bladder stones.

Condom catheters

Image of a condom catheter. A condom-like bag is held over the penis which drains through a tube to a urine bag strapped to the thigh.

Condom catheter with drainage bag strapped to the thigh5

Condom catheters are catheters that are placed over the penis on males to collect urine. Condom catheters resemble a condom and are placed over the penis and connected through tubes to a collection device. Unlike indwelling catheters, condom catheters must be changed each day.

Condom catheters are usually used for people that either leak in between bladder emptying sessions or for individuals who have the ability to trigger emptying by causing a spasm of their bladder (called reflex voiding). Because they are used to collect urine as it passes out of the body rather than directly from the bladder, condom catheters are not usually used for people with difficulties causing the bladder to empty.

One of the main concerns of condom catheters is incomplete bladder drainage, which can cause kidney damage. Therefore, a careful medical examination is needed to ensure that use of condom catheters alone is an appropriate management technique. For people who can use them safely, condom catheters are often considered a safer long-term treatment option because they are less invasive than catheters that are inserted into the body.

Reflex voiding

Reflex voiding is a technique that can be used by some people with spastic bladder to cause urination. Reflex voiding is usually done by tapping over the bladder lightly and repeatedly with the fingertips or the side of the hand to stimulate reflex muscle contractions in the bladder that cause urination. This technique can be used to help improve bladder emptying during intermittent catheterization and when using condom catheters.

Older techniques for reflex voiding such as the Valsalva maneuver (increasing abdominal pressure by holding the breath and bracing) and the Crede technique (applying manual pressure onto the bladder through the abdomen) are NO longer used because they can cause too much pressure in the bladder, which can damage the kidneys.

Maintaining good hygiene

A person lying down on a bed with a urinary catheter and collection bag hanging on the bed frame (left). Emptying the collection bag into a glass beaker (right).


Catheter maintenance includes emptying and washing the collection bag regularly.6,7

Maintaining good hygiene and cleanliness is required when using all types of catheters. In addition to washing your hands and genitals before using catheters, it is important to clean the collection bag as well. The collection bag must be emptied once it is about ¾ full. This is essential to help prevent complications like infections and the weight of the bag causing the condom catheter to fall off or irritation to the urethra if using an indwelling catheter.

Although sterile technique (using medical grade techniques and equipment to reduce bacteria) may be used during catheterization, research suggests that clean technique (maintaining clean and hygienic, but not medical grade techniques) is sufficient to reduce risk of urinary tract infections.

Although use of urinary catheters is the standard of care for managing bladder emptying after SCI, there are risks and side effects that may be related to the use of catheters. This is not a complete list. Speak to your health provider for further information.

Risks and side effects of urinary catheterization may include:

  • Pain and discomfort
  • Inconvenience
  • Indwelling catheters may limit a person’s movement and activities
  • Indwelling catheters may be considered embarrassing
  • Damage to the urethra from insertion of catheter or irritation from excess movement of indwelling catheter
    X-ray of a large bladder stone

    X-ray of a large bladder stone8

  • If used improperly (not regularly enough), damage to the kidneys can happen when bladder overfilling or bladder pressures causes urine reflux back up to the kidneys
  • Allergic reaction to the catheter material (often latex)
  • Bladder stones (crystallization of minerals in the urine from poor bladder emptying, indwelling catheters and unclean catheterization technique)
  • Urinary tract infections (from unclean catheter technique and incomplete bladder emptying)
  • Bladder cancer is associated with long term use of catheterization

Some of the risks associated with using urinary catheters can result from improper use, such as using improper or unclean technique or waiting too long between catheterizations. It is important that you discuss your bladder routine with a knowledgeable health provider to determine the best schedule for you and to learn to use the equipment correctly.

The use of urinary catheters for emptying the bladder is considered an essential standard care for bladder problems after SCI. Because of this, most research studies have instead looked at answering important questions about the relationships between catheters and complications.

Which type of catheterization has the highest risk of complications?

Cartoon of the kidneys and bladderThere is weak evidence from two studies that intermittent catheterization has the lowest risk of complications (such as urinary tract infections), followed by condom catheters. The highest risk of complications is with the use of indwelling catheters. Another study provides weak evidence that indwelling catheters are also related to higher risk of bladder cancer compared to other types of catheters.

However, the choice of which type of catheterization to use is often related to many different factors, like level of injury and the type of bladder problems that a person has. For instance, another study found that for people with high-level tetraplegia, suprapubic catheters may lead to fewer complications than intermittent catheterization.

Additionally, the type of catheter equipment used for catheterization may also be important to reduce risk. There is strong evidence from a review of five studies that using lubricated (hydrophilic) catheters for intermittent catheterization reduces the risk of urinary tract infections compared to non-lubricated catheters.

Urinary catheters are the main method of emptying the bladder for people with bladder problems after SCI. There are several types of catheterization, with the most common being intermittent catheterization. The type of catheterization used depends on many factors, such as the type of neurogenic bladder, your risk of complications, level of independence, funding and lifestyle.

Research studies suggest that intermittent catheterization is the type of catheterization with the lowest risk of complications. For further information, it is important to discuss your treatment options with your health providers to find out which treatments are best for you.

For a review of how we assess evidence at SCIRE Community and advice on making decisions, please see SCIRE Community Evidence.

This page has been adapted from SCIRE Professional “Bladder Management” Module:

Hsieh J, McIntyre A, Iruthayarajah J, Loh E, Ethans K, Mehta S, Wolfe D, Teasell R. (2014). Bladder Management Following Spinal Cord Injury. In Eng JJ, Teasell RW, Miller WC, Wolfe DL, Townson AF, Hsieh JTC, Connolly SJ, Noonan VK, Loh E, McIntyre A, editors. Spinal Cord Injury Rehabilitation Evidence. Version 5.0: p 1-196.
Available from: https://scireproject.com/evidence/bladder-management/

Evidence for “How effective are urinary catheters for managing bladder problems after SCI?” is based on the following studies:

[1] Ord J, Lunn D, Reynard J. Bladder management and risk of bladder stone formation in spinal cord injured patients. Journal d’urologie 2003;170(5):1734-1737.

[2] Weld KJ, Dmochowski RR. Effect of bladder management on urological complications in spinal cord injured patients. J Urol 2000;163(3):768-772.

[3] Groah SL, Weitzenkamp DA, Lammertse DP, Whiteneck GG, Lezotte DC, Hamman RF. Excess risk of bladder cancer in spinal cord injury: evidence for an association between indwelling catheter use and bladder cancer. Arch Phys Med Rehabil 2002;83(3):346-351.

[4] Li L, Ye W, Ruan H, Yang B, Zhang S, Li L. Impact of hydrophilic catheters on urinary tract infections in people with spinal cord injury: Systematic review and meta-analysis of randomized controlled trials. Arch Phys Med Rehabil 2013;94(4):782-787.

Other References:

Cardenas DD, Hoffman JM. Hydrophilic catheters versus noncoated catheters for reducing the incidence of urinary tract infections: A randomized controlled trial. Arch Phys Med Rehabil 2009; 90:1668-1671.

Cardenas DD, Moore KN, Dannels-McClure A, Scelza WM, Graves DE, Brooks M et al. Intermittent catheterization with a hydrophilic-coated catheter delays urinary tract infections in acute spinal cord injury: A prospective, randomized, multicenter trial. PM R 2011; 3:408-417.

De Ridder DJ, Everaert K, Fernandez LG, Valero JV, Duran AB, Abrisqueta ML et al. Intermittent catheterisation with hydrophilic-coated catheters (SpeediCath) reduces the risk of clinical urinary tract infection in spinal cord injured patients: A prospective randomised parallel comparative trial. Eur Urol 2005; 48(6):991-995.

Giannantoni A, Di Stasi SM, Scivoletto G, Virgili G, Dolci S, Porena M. Intermittent catheterization with a prelubricated catheter in spinal cord injured patients: A prospective randomized crossover study. J Urol 2001; 166(1):130-133.

Groah SL, Weitzenkamp DA, Lammertse DP, Whiteneck GG, Lezotte DC, Hamman RF. Excess risk of bladder cancer in spinal cord injury: evidence for an association between indwelling catheter use and bladder cancer. Arch Phys Med Rehabil 2002; 83(3):346-351.

Hackler RH. Long-term Suprapubic cystostomy drainage in spinal cord injury patients. Br J Urol 1982; 54(2):120-121.

Moore KN, Burt J, Voaklander DC. Intermittent catheterization in the rehabilitation setting: A comparison of clean and sterile technique. Clin Rehabil 2006;20(6):461-468.

Ord J, Lunn D, Reynard J. Bladder management and risk of bladder stone formation in spinal cord injured patients. Journal d’urologie 2003; 170(5):1734-1737.

Perkash I, Kabalin JN, Lennon S, Wolfe V. Use of penile prostheses to maintain external condom catheter drainage in spinal cord injury patients. Paraplegia 1992; 30(5):327-332.

Prieto-Fingerhut T, Banovac K, Lynne CM. A study comparing sterile and nonsterile urethral catheterization in patients with spinal cord injury. Rehabil Nurs 1997;22(6):299-302.

van den Broek PJ, Wille JC, van Benthem BH, Perenboom RJ, van den Akker-van Marle ME, Niel-Weise BS. Urethral catheters: can we reduce use? BMC Urol 2011; 11:10.

Wyndaele JJ, De Taeye N. Early intermittent self-catheterisation after spinal cord injury. Paraplegia 1990; 28(2):76-80.

Yadav A, Vaidyanathan S, Panigrahi D. Clean intermittent catheterisation for the neuropathic bladder. Paraplegia 1993; 31(6):380-383.

Yavuzer G, Gok H, Tuncer S, Soygur T, Arikan N, Arasil T. Compliance with bladder management in spinal cord injury patients. Spinal Cord 2000; 38(12):762-765.

Image credits

  1. Urinary catheterization 01 ©Saltanat ebli, CC0 1.0
  2. Modified from: Urinary Sphincter ©BruceBlaus, CC BY-SA 4.0
  3. Calendar ©tezar tantular, CC BY 3.0 US
  4. Foley Catheter ©BruceBlaus, CC BY-SA 4.0
  5. Condom Cather Drainage ©BruceBlaus, CC BY-SA 4.0
  6. Modified from: Closed Urinary Drainage ©BruceBlaus, CC BY-SA 4.0
  7. Modified from: Empty the Urinary Drainage Bag ©BruceBlaus, CC BY-SA 4.0
  8. Bladder Stone 08783 ©Nevit Dilmen, CC BY-SA 3.0
  9. Excretory system ©Olena Panasovska, CC BY 3.0 US

 

Disclaimer: This document does not provide medical advice. This information is provided for educational purposes only. Consult a qualified health professional for further information or specific medical advice. The SCIRE Project, its partners and collaborators disclaim any liability to any party for any loss or damage by errors or omissions in this publication.